In
mathematics, homotopy theory is a systematic study of situations in which
maps
A map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes.
Many maps are static, fixed to paper or some other durable medium, while others are dynamic or interactive. Althoug ...
can come with
homotopies between them. It originated as a topic in
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as
algebraic geometry (e.g.,
A1 homotopy theory) and
category theory (specifically the study of
higher categories).
Concepts
Spaces and maps
In homotopy theory and algebraic topology, the word "space" denotes a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
. In order to avoid
pathologies
Pathology is the study of the causes and effects of disease or injury. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in t ...
, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being
compactly generated In mathematics, compactly generated can refer to:
* Compactly generated group, a topological group which is algebraically generated by one of its compact subsets
*Compactly generated space
In topology, a compactly generated space is a topological s ...
, or
Hausdorff, or a
CW complex
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This cla ...
.
In the same vein as above, a "
map" is a continuous function, possibly with some extra constraints.
Often, one works with a
pointed space
In mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as x_0, that remains ...
-- that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which preserves basepoints; that is, it sends the basepoint of the domain to that of the codomain. In contrast, a free map is one which needn't preserve basepoints.
Homotopy
Let ''I'' denote the unit interval. A family of maps indexed by ''I'',
is called a homotopy from
to
if
is a map (e.g., it must be a
continuous function). When ''X'', ''Y'' are pointed spaces, the
are required to preserve the basepoints. A homotopy can be shown to be an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relatio ...
. Given a pointed space ''X'' and an
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
, let
be the homotopy classes of based maps
from a (pointed) ''n''-sphere
to ''X''. As it turns out,
are
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
s; in particular,
is called the
fundamental group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
of ''X''.
If one prefers to work with a space instead of a pointed space, there is the notion of a
fundamental groupoid In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of ...
(and higher variants): by definition, the fundamental groupoid of a space ''X'' is the
category
Category, plural categories, may refer to:
Philosophy and general uses
*Categorization, categories in cognitive science, information science and generally
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce) ...
where the
objects
Object may refer to:
General meanings
* Object (philosophy), a thing, being, or concept
** Object (abstract), an object which does not exist at any particular time or place
** Physical object, an identifiable collection of matter
* Goal, an ai ...
are the points of ''X'' and the
morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphis ...
s are paths.
Cofibration and fibration
A map
is called a
cofibration In mathematics, in particular homotopy theory, a continuous mapping
:i: A \to X,
where A and X are topological spaces, is a cofibration if it lets homotopy classes of maps ,S/math> be extended to homotopy classes of maps ,S/math> whenever a map ...
if given (1) a map
and (2) a homotopy
, there exists a homotopy
that extends
and such that
. To some loose sense, it is an analog of the defining diagram of an
injective module
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module ''Q'' that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if ''Q'' is a submodule ...
in
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The te ...
. The most basic example is a
CW pair
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This clas ...
; since many work only with CW complexes, the notion of a cofibration is often implicit.
A
fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.
Fibrations are used, for example, in postnikov-systems or obstruction theory.
In this article, all map ...
in the sense of Serre is the dual notion of a cofibration: that is, a map
is a fibration if given (1) a map
and (2) a homotopy
, there exists a homotopy
such that
is the given one and
. A basic example is a covering map (in fact, a fibration is a generalization of a covering map). If
is a
principal ''G''-bundle, that is, a space with a
free and transitive (topological)
group action
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphi ...
of a (
topological
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
) group, then the projection map
is an example of a fibration.
Classifying spaces and homotopy operations
Given a topological group ''G'', the
classifying space
In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free ac ...
for
principal ''G''-bundles ("the" up to equivalence) is a space
such that, for each space ''X'',
:
/ ~
where
*the left-hand side is the set of homotopy classes of maps
,
*~ refers isomorphism of bundles, and
*= is given by pulling-back the distinguished bundle
on
(called universal bundle) along a map
.
Brown's representability theorem guarantees the existence of classifying spaces.
Spectrum and generalized cohomology
The idea that a classifying space classifies principal bundles can be pushed further. For example, one might try to classify cohomology classes: given an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is com ...
''A'' (such as
),
:
where
is the
Eilenberg–MacLane space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space Saunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this nam ...
. The above equation leads to the notion of a generalized cohomology theory; i.e., a
contravariant functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
from the category of spaces to the
category of abelian groups In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab.
Properties
The zero object of ...
that satisfies the axioms generalizing ordinary cohomology theory. As it turns out, such a functor may not be
representable by a space but it can always be represented by a sequence of (pointed) spaces with structure maps called a spectrum. In other words, to give a generalized cohomology theory is to give a spectrum.
A basic example of a spectrum is a
sphere spectrum In stable homotopy theory, a branch of mathematics, the sphere spectrum ''S'' is the monoidal unit in the category of spectra. It is the suspension spectrum of ''S''0, i.e., a set of two points. Explicitly, the ''n''th space in the sphere spectru ...
:
Key theorems
*
Seifert–van Kampen theorem
In mathematics, the Seifert–Van Kampen theorem of algebraic topology (named after Herbert Seifert and Egbert van Kampen), sometimes just called Van Kampen's theorem, expresses the structure of the fundamental group of a topological space X in t ...
*
Homotopy excision theorem
In algebraic topology, the homotopy excision theorem offers a substitute for the absence of excision in homotopy theory. More precisely, let (X; A, B) be an excisive triad with C = A \cap B nonempty, and suppose the pair (A, C) is (m-1)-connecte ...
*
Freudenthal suspension theorem
In mathematics, and specifically in the field of homotopy theory, the Freudenthal suspension theorem is the fundamental result leading to the concept of stabilization of homotopy groups and ultimately to stable homotopy theory. It explains the b ...
(a corollary of the excision theorem)
*
Landweber exact functor theorem
In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or ...
*
Dold–Kan correspondence
In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an Equivalence of categories, equivalence between the category of (nonnegatively graded) ...
*
Eckmann–Hilton argument
In mathematics, the Eckmann–Hilton argument (or Eckmann–Hilton principle or Eckmann–Hilton theorem) is an argument about two unital magma structures on a set where one is a homomorphism for the other. Given this, the structures can be sho ...
- this shows for instance higher homotopy groups are
abelian
Abelian may refer to:
Mathematics Group theory
* Abelian group, a group in which the binary operation is commutative
** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms
* Metabelian group, a grou ...
.
*
Universal coefficient theorem
In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space , its ''integral homology groups'':
:
completely ...
Obstruction theory and characteristic class
See also:
Characteristic class
In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic class ...
,
Postnikov tower
In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree k agrees with the ...
,
Whitehead torsion In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence f\colon X \to Y of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion \tau(f) which is an element in the Whitehead group \o ...
Localization and completion of a space
Specific theories
There are several specific theories
*
simple homotopy theory
In mathematics, simple homotopy theory is a homotopy theory (a branch of algebraic topology) that concerns with the simple-homotopy type of a space. It was originated by Whitehead in his 1950 paper "Simple homotopy type".
See also
*Whitehead to ...
*
stable homotopy theory
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the ...
*
chromatic homotopy theory In mathematics, chromatic homotopy theory is a subfield of stable homotopy theory that studies complex-oriented cohomology theories from the "chromatic" point of view, which is based on Quillen's work relating cohomology theories to formal groups. ...
*
rational homotopy theory
In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by and . This simplification of homo ...
*
p-adic homotopy theory
In mathematics, the -adic number system for any prime number extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The exten ...
*
equivariant homotopy theory
In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group ...
Homotopy hypothesis
One of the basic questions in the foundations of homotopy theory is the nature of a space. The
homotopy hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states that the ∞-groupoids are spaces. If we model our ∞-groupoids as Kan complexes, then the homotopy types of the geometric realizations of these sets give mod ...
asks whether a space is something fundamentally algebraic.
Abstract homotopy theory
Concepts
*
fiber sequence
*
cofiber sequence In mathematics, the Puppe sequence is a construction of homotopy theory, so named after Dieter Puppe. It comes in two forms: a long exact sequence, built from the mapping fibre (a fibration), and a long coexact sequence, built from the mapping con ...
Model categories
Simplicial homotopy theory
*
Simplicial homotopy In algebraic topology, a simplicial homotopypg 23 is an analog of a homotopy between topological spaces for simplicial sets. If
:f, g: X \to Y
are maps between simplicial sets, a simplicial homotopy from ''f'' to ''g'' is a map
:h: X \times \Delta^ ...
See also
*
Highly structured ring spectrum
In mathematics, a highly structured ring spectrum or A_\infty-ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an A_\infty-ring is called an E_\infty-ring. Wh ...
*
Homotopy type theory
In mathematical logic and computer science, homotopy type theory (HoTT ) refers to various lines of development of intuitionistic type theory, based on the interpretation of types as objects to which the intuition of (abstract) homotopy theor ...
*
Pursuing Stacks
''Pursuing Stacks'' (french: À la Poursuite des Champs) is an influential 1983 mathematical manuscript by Alexander Grothendieck. It consists of a 12-page letter to Daniel Quillen followed by about 600 pages of research notes.
The topic of the ...
References
*May, J
A Concise Course in Algebraic Topology*
*Ronald Brown,
' (2006) Booksurge LLC {{ISBN, 1-4196-2722-8.
Further reading
Cisinski's notes*http://ncatlab.org/nlab/files/Abstract-Homotopy.pdf
lectures by Martin Frankland
External links
*https://ncatlab.org/nlab/show/homotopy+theory