ASASSN-15lh
   HOME

TheInfoList



OR:

ASASSN-15lh ( supernova designation SN 2015L) is an extremely luminous astronomical transient event discovered by the
All Sky Automated Survey for SuperNovae The All Sky Automated Survey for SuperNovae (ASAS-SN) is an automated program to search for new supernovae and other astronomical transients, headed by astronomers from the Ohio State University, including Christopher Kochanek and Krzysztof Stanek. ...
(ASAS-SN), with the appearance of a
superluminous supernova A super-luminous supernova (SLSN, plural super luminous supernovae or SLSNe) is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mech ...
event. It was first detected on June 14, 2015, located within a faint galaxy in the southern constellation
Indus The Indus ( ) is a transboundary river of Asia and a trans-Himalayan river of South and Central Asia. The river rises in mountain springs northeast of Mount Kailash in Western Tibet, flows northwest through the disputed region of Kashmir, ...
, and was the most luminous supernova-like object ever observed. At its peak, ASASSN-15lh was 570 billion times brighter than the Sun, and 20 times brighter than the combined light emitted by the
Milky Way Galaxy The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. The emitted energy was exceeded by
PS1-10adi PS1-10adi is an unusual kind of highly energetic optical transient discovered by the Pan-STARRS survey on 15 August 2010. The explosion or transient event emitted 2.3×1052 ergs (2.3×1045 Joules), exceeding ASASSN-15lh. It may be a superl ...
. The nature of ASASSN-15lh is disputed. The most popular explanations are that it is the most luminous type I supernova (hypernova) ever observed, or a
tidal disruption event A tidal disruption event (TDE) is an astronomical phenomenon that occurs when a star approaches sufficiently close to a supermassive black hole (SMBH) to be pulled apart by the black hole's tidal force, experiencing spaghettification. A portion o ...
around a
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical obj ...
. Other hypotheses include: gravitational lensing; a quark nova inside a
Wolf–Rayet star Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface ...
; or a rapid
magnetar A magnetar is a type of neutron star with an extremely powerful magnetic field (∼109 to 1011 T, ∼1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.War ...
spindown.


Discovery

A possible supernova was first noticed during an observation in June 2015 by ASAS-SN's twin 14-cm telescopes in Chile; the team gave it the designation ASASSN-15lh. It appeared as a transient dot of light on an image and was confirmed with additional observations from other telescopes. The spectrum of ASASSN-15lh was provided by the 2.5-meter du Pont Telescope in Chile. The
Southern African Large Telescope The Southern African Large Telescope (SALT) is a 10-metre class optical telescope designed mainly for spectroscopy. It consists of 91 hexagonal mirror segments each with a 1-metre inscribed diameter, resulting in a total hexagonal mirror of 11.1 ...
was used to determine the
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
, and hence the distance and luminosity. The ''Swift'' space telescope also contributed observations. On July 24, the event formally received the supernova designation SN 2015L from the Central Bureau of Astronomical Telegrams. Later, other images were found to have been made of ASASSN-15lh as early as May 8, 2015. At this stage the
visual magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
was 17.4. From May 8 the possible supernova brightened until it reached a peak brightness of magnitude 16.9 on June 5. By September the brightness had dropped to magnitude 18.2. There was an unusual "rebrightening" of up to 1.75 magnitudes at blue and
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
wavelengths, starting about 90 days after the maximum. This coincided with a plateau in the bolometric luminosity that lasted for 120 days.


Properties

Based on its redshift and location projected on the nucleus of a large galaxy, the distance of ASASSN-15lh is calculated at 1,171 Mpc, in a large luminous galaxy. At its peak, the
absolute magnitude Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse Logarithmic scale, logarithmic Magnitude (astronomy), astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent mag ...
of ASASSN-15lh in the
AB magnitude The AB magnitude system is an astronomical magnitude system. Unlike many other magnitude systems, it is based on flux measurements that are calibrated in absolute units, namely spectral flux densities. Definition The ''monochromatic'' AB magnit ...
system u band was −23.5. Its
bolometric luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a s ...
is twice that of the previous brightest type-I superluminous supernova, iPTF13ajg. At its brightest, it was approximately 50 times more luminous than the whole
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
galaxy, with an energy flux 570 billion times greater than the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. The total energy radiated in the first 50 days exceeded
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied ...
s. According to
Krzysztof Stanek Krzysztof Stanek is an observational astrophysicist and Professor and University Distinguished Scholar at Ohio State University. He was named a University Distinguished Scholar in 2018. His research focus is on the explosive deaths of massive s ...
of
Ohio State University The Ohio State University, commonly called Ohio State or OSU, is a public land-grant research university in Columbus, Ohio. A member of the University System of Ohio, it has been ranked by major institutional rankings among the best publ ...
, one of the principal investigators at ASAS-SN, "If it was in our own galaxy, it would shine brighter than the full moon; there would be no night, and it would be easily seen during the day." The spectrum of ASASSN-15lh was relatively featureless, with no
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
or
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
lines, but two very broad absorption bands. Ionised
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
absorption doublets were detected and used to confirm the
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
at 0.2326. The temperature of ASASSN-15lh at the time of maximum luminosity was 20,000 K, although it was hotter earlier in the outburst. By 50 days after the peak, the temperature had declined to 11,000 K and then remained relatively constant. The radius of ASASSN-15lh at peak brightness was over .


Host galaxy

The host galaxy for ASASSN-15lh is APMUKS(BJ) B215839.70−615403.9, much larger and more luminous than the Milky Way. The host galaxy has visual magnitude 18.5 and is red in color with a low rate of star formation. It maintained a steady brightness until the supernova lit up. The strongest parts of the galaxy's spectrum have wavelengths around 1 μm in the near infrared.


Suggested mechanisms

The precise mechanism underlying the very large ASASSN-15lh explosion is still unknown, with speculation ranging from the presence of very large quantities of decaying
nickel-56 Naturally occurring nickel (28Ni) is composed of five stable isotopes; , , , and , with being the most abundant (68.077% natural abundance). 26 radioisotopes have been characterised with the most stable being with a half-life of 76,000 years, ...
to the amplifying effects of a
magnetar A magnetar is a type of neutron star with an extremely powerful magnetic field (∼109 to 1011 T, ∼1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.War ...
. Its unusual location in a relatively quiescent galaxy may offer clues for scientists to discover and observe similar events.


Superluminous supernova

The initial hypothesis was that ASASSN-15lh was the most extreme
superluminous supernova A super-luminous supernova (SLSN, plural super luminous supernovae or SLSNe) is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mech ...
e (SLSNe) so far seen, but it was recognized as being unusual in several respects. The spectrum did not closely match other type I SLSNe and previous SLSNe have been discovered in relatively small active star-producing galaxies, not in the central regions of large galaxies. The double-peaked light curve is not expected from a SLSN and the total energy output approaches theoretical limits. The lack of hydrogen and helium features in the spectrum suggest an explosion originating in an object lacking both hydrogen and helium, which would imply a highly stripped star such as a massive
Wolf–Rayet star Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface ...
. The energetics of the explosion would require a massive star.


Magnetar

One model for unusually luminous supernovae involves the conversion of rotational energy from a rapidly-spinning
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white ...
into polar jets that heat surrounding material. Again, the energy produced by ASASSN-15lh strains the theoretical limits of this type of explosion and the detailed properties are difficult to reproduce with a magnetar model.


Quark nova

One unusual explanation for ASASSN-15lh is a
quark-nova A quark-nova is the hypothetical violent explosion resulting from the conversion of a neutron star to a quark star. Analogous to a supernova heralding the birth of a neutron star, a quark nova signals the creation of a quark star. The term quark- ...
within the supernova explosion from a WO-type Wolf-Rayet star. The quark nova is produced by the neutron star remnant of the supernova and occurs a few days after the core collapse of the Wolf-Rayet star. This can reproduce many of the unusual features of the observed event but is somewhat speculative and not widely accepted.


Tidal disruption event (TDE)

One known method for producing extremely large amounts of energy is the tidal disruption of objects such as stars by a supermassive black hole. ASASSN-15lh occurred in the nucleus of a large passive galaxy where a supermassive black hole is likely. A black hole of the mass expected in the host galaxy of ASASSN-15lh would normally swallow stars without a visible flare. The conditions for the production of a highly luminous flare from a TDE around a black hole of the expected mass are unusual, but a rapidly-spinning
Kerr black hole The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of ge ...
might be able to disrupt a star with a mass similar to the sun outside the event horizon and produce a hot accretion disc and luminous transient. It could also account for the temperature changes, rebrightening, and unusual spectral evolution. However, lack of hydrogen and/or helium lines in the spectra of ASASSN-15lh poses a major problem for the TDE scenario.


Gravitational lensing

Unexpectedly bright visible objects can be produced by
gravitational lensing A gravitational lens is a distribution of matter (such as a galaxy cluster, cluster of galaxies) between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This ...
of very distant objects by extremely massive objects closer to Earth. However, this usually occurs with objects much more distant than ASASSN-15lh, and there are no observations indicating the presence of a galaxy cluster suitable to produce a lensing effect.


References


Further reading

*


External links


Brightest supernova ever seen pushes theoretical models to the edge
Astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...

'Brightest Supernova Ever' Was Actually Monster Black Hole's Violent Star Slashing
Space.com

Breaking Science News Sci-News.com
Superluminous Supernova Is The Brightest Ever Seen
Forbes {{DEFAULTSORT:ASASSN-15lh 20150614 Hypernovae Indus (constellation)