HOME

TheInfoList



OR:

In
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
, an anti-resonant reflecting optical
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
(ARROW) is a waveguide that uses the principle of
thin-film interference Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film interfere with one another, either enhancing or reducing the reflected light. When the thickness of the film is an ...
to guide light with low loss. It is formed from an anti-resonant Fabry–Pérot reflector. The optical mode is leaky, but relatively low-loss propagation can be achieved by making the Fabry–Pérot reflector of sufficiently high quality or small size.


Principles of Operation

ARROW relies on the principle of
thin-film interference Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film interfere with one another, either enhancing or reducing the reflected light. When the thickness of the film is an ...
. It is created by forming a Fabry-Perot cavity in the transverse direction, with cladding layers that function as Fabry-Perot etalons. A Fabry-Perot etalon is in resonance when the light in the layer constructively interferes with itself, resulting in high transmission. Anti-resonance occurs when the light in the layer destructively interferes with itself, resulting in no transmission through the etalon. The refractive indexes of the guiding core (nc) and the cladding layers (nj, ni) are important and are carefully chosen. In order to make anti-resonance happen, nc needs to smaller than nj. In a typical system of a solid core ARROW, as shown in the figure, the waveguide consists of a low
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
guiding core bounded on the upper surface by air and on the lower surface by higher refractive index antiresonant reflecting cladding layers. The confinement of light on the upper surface of the guiding core is provided by the total internal reflection with air, while the confinement on the lower surface is provided by interference created by the antiresonant cladding layers. The thickness of the antiresonant cladding layer (tj) of an ARROW also needs to be carefully chosen in order to achieve anti-resonance. It can be calculated by the following formula: t_j=(2N-1) -+, N = 1, 2, 3,... : t_j = thickness of the antiresonant cladding layer : t_c= thickness of the guiding core layer : \lambda = wavelength : n_j = refractive index of antiresonant cladding layer : n_c = refractive index of guiding core layer while n_j > n_c > n_


Considerations

ARROWs can be realized as cylindrical waveguides (2D confinement) or slab waveguides (1D confinement). The latter ARROWs are practically formed by a low index layer, embedded between higher index layers. Note that the refractive indices of these ARROWs are reversed, when comparing to usual waveguides. Light is confined by
total internal reflection Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected b ...
(TIR) on the inside of the higher index layers, but achieves a lot of modal overlap with the lower index central volume. This strong overlap can be made plausible in a simplified picture imagining "rays", as in
geometrical optics Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of ''rays''. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstan ...
. Such rays are refracted into a very shallow angle, when entering the low index inner layer. Thus, one can use the metaphor that these rays "stay very long inside" the low index inner layer. Note this is just a metaphor and the explanatory power of ray optics is very limited for the micrometer scales, at which these ARROWs are typically made.


Applications

ARROW are often used for guiding light in liquids, particularly in photonic
lab-on-a-chip A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit (commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and high-throughput screening. ...
analytical systems (PhLoCs). Conventional waveguides rely on the principle of total internal reflection, which can only occur if the refractive index of the guiding core material is greater than the refractive indexes of its surroundings. However, the materials used to make the guiding core are typically polymer and silicon-based materials, which have higher refractive indexes (n=1.4-3.5) than that of water (n = 1.33). As a result, a conventional hollow-core waveguide no longer works once it's filled with water solution, making the PhLoCs useless. An ARROW, on the other hand, can be liquid-filled since it confines light completely by interference, which requires that the refractive index of the guiding core to be lower than the refractive index of the surrounding materials. Thus, ARROWs become the ideal building blocks for PhLoCs. Though ARROWs carry big advantage over conventional waveguide for building PhLoCs, they are not perfect. The main problem of ARROW is its undesirable light loss. Light loss of ARROWs decreases the signal to noise ratio of the PhLoCs. Different versions of ARROWs have been designed and tested in order to overcome this problem.{{Cite journal, last1=Wall, first1=Thomas A., last2=Chu, first2=Roger P., last3=Parks, first3=Joshua W., last4=Ozcelik, first4=Damla, last5=Schmidt, first5=Holger, last6=Hawkins, first6=Aaron R., author6-link= Aaron Hawkins (engineer) , date=2016-01-01, title=Improved environmental stability for plasma enhanced chemical vapor deposition SiO2 waveguides using buried channel designs, journal=Optical Engineering, volume=55, issue=4, pages=040501, doi=10.1117/1.OE.55.4.040501, pmid=28190901, issn=0091-3286, bibcode = 2016OptEn..55d0501W , pmc=5298888


See also

*
Waveguide (optics) An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light g ...
*
Photonic-crystal fiber Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement charact ...


External links


ARROW Waveguide Layer Thickness Calculator


References

* Optical devices