HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, in the field of
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
is said to be a-paracompact if every
open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\s ...
of the space has a locally finite
refinement Refinement may refer to: Mathematics * Equilibrium refinement, the identification of actualized equilibria in game theory * Refinement of an equivalence relation, in mathematics ** Refinement (topology), the refinement of an open cover in mathem ...
. In contrast to the definition of
paracompactness In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, ...
, the refinement is not required to be open. Every paracompact space is a-paracompact, and in
regular space In topology and related fields of mathematics, a topological space ''X'' is called a regular space if every closed subset ''C'' of ''X'' and a point ''p'' not contained in ''C'' admit non-overlapping open neighborhoods. Thus ''p'' and ''C'' can ...
s the two notions coincide.


References

* Compactness (mathematics) {{topology-stub