In physics, Wigner's 9-''j'' symbols were introduced by
Eugene Paul Wigner
Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his con ...
in 1937. They are related to
recoupling coefficients in
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
involving four angular momenta
Recoupling of four angular momentum vectors
Coupling of two angular momenta
and
is the construction of simultaneous eigenfunctions of
and
, where
, as explained in the article on
Clebsch–Gordan coefficients
In physics, the Clebsch–Gordan (CG) coefficients are numbers that arise in angular momentum coupling in quantum mechanics. They appear as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. In ...
.
Coupling of three angular momenta can be done in several ways, as explained in the article on
Racah W-coefficients. Using the notation and techniques of that article, total angular momentum states that arise from coupling the angular momentum vectors
,
,
, and
may be written as
:
Alternatively, one may first couple
and
to
and
and
to
, before coupling
and
to
:
:
Both sets of functions provide a complete, orthonormal basis for the space with dimension
spanned by
:
Hence, the transformation between the two sets is unitary and the matrix elements of the transformation are given by the scalar products of the functions.
As in the case of the
Racah W-coefficients the matrix elements are independent of the total angular momentum projection quantum number (
):
:
Symmetry relations
A 9-''j'' symbol is invariant under reflection about either diagonal as well as
even permutation
In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total ...
s of its rows or columns:
:
An odd permutation of rows or columns yields a phase factor
, where
:
For example:
:
Reduction to 6j symbols
The 9-''j'' symbols can be calculated as sums over triple-products of 6-''j'' symbols where the summation extends over all admitted by the triangle conditions in the factors:
:
.
Special case
When
the 9-''j'' symbol is proportional to a
6-j symbol:
:
Orthogonality relation
The 9-''j'' symbols satisfy this orthogonality relation:
:
The
''triangular delta'' is equal to 1 when the triad (''j''
1, ''j''
2, ''j''
3) satisfies the triangle conditions, and zero otherwise.
3''n''-j symbols
The
6-j symbol is the first representative, , of -''j'' symbols that are defined as sums of products of of Wigner's 3-''jm'' coefficients. The sums are over all combinations of that the -''j'' coefficients admit, i.e., which lead to non-vanishing contributions.
If each 3-''jm'' factor is represented by a vertex and each j by an edge, these -''j'' symbols can be mapped on certain
3-regular graphs with vertices and nodes. The 6-''j'' symbol is associated with the
K4 graph on 4 vertices, the 9-''j'' symbol with the
utility graph
As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosopher ...
on 6 vertices (''K''
3,3), and the two distinct (non-isomorphic) 12-''j'' symbols with the
''Q''3 and
Wagner graph
In the mathematical field of graph theory, the Wagner graph is a 3-regular graph with 8 vertices and 12 edges. It is the 8-vertex Möbius ladder graph.
Properties
As a Möbius ladder, the Wagner graph is nonplanar but has crossing number one, ...
s on 8 vertices.
Symmetry relations are generally representative of the automorphism group of these graphs.
See also
*
Clebsch–Gordan coefficients
In physics, the Clebsch–Gordan (CG) coefficients are numbers that arise in angular momentum coupling in quantum mechanics. They appear as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. In ...
*
3-j symbol In quantum mechanics, the Wigner 3-j symbols, also called 3''-jm'' symbols, are an alternative to Clebsch–Gordan coefficients for the purpose of adding angular momenta. While the two approaches address exactly the same physical problem, the 3-''j' ...
, also called 3-jm symbol
*
Racah W-coefficient
*
6-j symbol
References
*
*
*
*
*
*
*
*
*
*
External links
* (Gives answer in exact fractions)
* (Answer as floating point numbers)
*
* (accurate; C, fortran, python)
* {{cite web
, first1=H.T.
, last1=Johansson
, title=(FASTWIGXJ)
, url=http://fy.chalmers.se/subatom/fastwigxj/
(fast lookup, accurate; C, fortran)
Rotational symmetry
Representation theory of Lie groups
Quantum mechanics