In
geometry, a 9-cube is a nine-
dimensional
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
with 512
vertices, 2304
edges, 4608
square faces, 5376
cubic
Cubic may refer to:
Science and mathematics
* Cube (algebra), "cubic" measurement
* Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex
** Cubic crystal system, a crystal system w ...
cells
Cell most often refers to:
* Cell (biology), the functional basic unit of life
Cell may also refer to:
Locations
* Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
, 4032
tesseract 4-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''.
In more technical treatments of the geometry of polyhedra ...
s, 2016
5-cube
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.
It is represented by Schläfli symbol or , constructed as 3 tesseracts, ...
5-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''.
In more technical treatments of the geometry of polyhedra ...
s, 672
6-cube 6-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''.
In more technical treatments of the geometry of polyhedra ...
s, 144
7-cube 7-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''.
In more technical treatments of the geometry of polyhedra ...
s, and 18
8-cube 8-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a '' polyhedron''.
In more technical treatments of the geometry of polyh ...
s.
It can be named by its
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
, being composed of three
8-cubes around each 7-face. It is also called an enneract, a
portmanteau of
tesseract (the ''4-cube'') and ''enne'' for nine (dimensions) in
Greek. It can also be called a regular octadeca-9-tope or octadecayotton, as a
nine-dimensional polytope constructed with 18 regular
facets.
It is a part of an infinite family of polytopes, called hypercubes. The
dual
Dual or Duals may refer to:
Paired/two things
* Dual (mathematics), a notion of paired concepts that mirror one another
** Dual (category theory), a formalization of mathematical duality
*** see more cases in :Duality theories
* Dual (grammatical ...
of a 9-cube can be called a
9-orthoplex
In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells ''4-faces'', 5376 5-simplex ''5-faces'', 4608 6-simplex ''6-faces'', 2304 7-simplex '' ...
, and is a part of the infinite family of
cross-polytope
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
s.
Cartesian coordinates
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
for the vertices of a 9-cube centered at the origin and edge length 2 are
: (±1,±1,±1,±1,±1,±1,±1,±1,±1)
while the interior of the same consists of all points (''x''
0, ''x''
1, ''x''
2, ''x''
3, ''x''
4, ''x''
5, ''x''
6, ''x''
7, ''x''
8) with −1 < ''x''
''i'' < 1.
Projections
Images
Derived polytopes
Applying an ''
alternation'' operation, deleting alternating vertices of the ''9-cube'', creates another
uniform polytope, called a ''
9-demicube
In geometry, a demienneract or 9-demicube is a uniform 9-polytope, constructed from the 9-cube, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
E. L. Elte identified it ...
'', (part of an infinite family called
demihypercubes), which has 18
8-demicube and 256 8-simplex facets.
Notes
References
*
H.S.M. Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington t ...
:
** Coxeter, ''
Regular Polytopes'', (3rd edition, 1973), Dover edition, , p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'',
ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'',
ath. Zeit. 200 (1988) 3-45*
Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966)
*
External links
*
*
Multi-dimensional Glossary: hypercubeGarrett Jones
{{Polytopes
9-polytopes