In
eight-dimensional geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, an eight-dimensional polytope or 8-polytope is a
polytope
In elementary geometry, a polytope is a geometric object with flat sides (''faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -d ...
contained by 7-polytope facets. Each
6-polytope
In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.
Definition
A 6-polytope is a closed six-dimensional figure with vertices, edges, faces, cells (3-faces), 4-faces, and 5-faces. A ...
ridge
A ridge or a mountain ridge is a geographical feature consisting of a chain of mountains or hills that form a continuous elevated crest for an extended distance. The sides of the ridge slope away from the narrow top on either side. The line ...
being shared by exactly two
7-polytope
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.
A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose f ...
facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
.
A uniform 8-polytope is one which is
vertex-transitive
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in ...
, and constructed from
uniform 7-polytope
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.
A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose ...
facets.
Regular 8-polytopes
Regular 8-polytopes can be represented by the
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
, with v 7-polytope
facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
around each
peak Peak or The Peak may refer to:
Basic meanings Geology
* Mountain peak
** Pyramidal peak, a mountaintop that has been sculpted by erosion to form a point Mathematics
* Peak hour or rush hour, in traffic congestion
* Peak (geometry), an (''n''-3)-di ...
.
There are exactly three such
convex regular 8-polytopes:
# -
8-simplex
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is co ...
# -
8-cube
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.
It is represented by Schl ...
# -
8-orthoplex
In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''.
It has two const ...
There are no nonconvex regular 8-polytopes.
Characteristics
The topology of any given 8-polytope is defined by its
Betti number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s and
torsion coefficient
A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional ...
s.
[Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008.]
The value of the
Euler characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 8-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.
Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.
Uniform 8-polytopes by fundamental Coxeter groups
Uniform 8-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the
Coxeter-Dynkin diagrams:
Selected regular and uniform 8-polytopes from each family include:
#
Simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
family: A
8 7">7-
#* 135 uniform 8-polytopes as permutations of rings in the group diagram, including one regular:
#*# -
8-simplex
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is co ...
or ennea-9-tope or enneazetton -
#
Hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
/
orthoplex
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
family: B
8 6">,36-
#* 255 uniform 8-polytopes as permutations of rings in the group diagram, including two regular ones:
#*# -
8-cube
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.
It is represented by Schl ...
or ''octeract''-
#*# -
8-orthoplex
In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''.
It has two const ...
or ''octacross'' -
#
Demihypercube
In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''-polytopes constructed from alternation of an ''n''-hypercube, labeled as ''hγn'' for being ''half'' of the hype ...
D
8 family:
5,1,1">5,1,1-
#* 191 uniform 8-polytopes as permutations of rings in the group diagram, including:
#*# -
8-demicube
In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
E. L. Elte ...
or ''demiocteract'', 1
51 - ; also as h .
#*# -
8-orthoplex
In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''.
It has two const ...
, 5
11 -
#
E-polytope family E
8 family:
4,1,1">4,1,1-
#* 255 uniform 8-polytopes as permutations of rings in the group diagram, including:
#*# -
Thorold Gosset
John Herbert de Paz Thorold Gosset (16 October 1869 – December 1962) was an English lawyer and an amateur mathematician. In mathematics, he is noted for discovering and classifying the semiregular polytopes in dimensions four and higher, and ...
's semiregular
421,
#*# - the uniform
142, ,
#*# - the uniform
241,
Uniform prismatic forms
There are many
uniform
A uniform is a variety of clothing worn by members of an organization while participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, se ...
prismatic
An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are ''not'' prisms. The most familiar type of optical ...
families, including:
The A8 family
The A
8 family has symmetry of order 362880 (9
factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times (n-1) \times (n-2) \t ...
).
There are 135 forms based on all permutations of the
Coxeter-Dynkin diagrams with one or more rings. (128+8-1 cases) These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.
See also a
list of 8-simplex polytopes for symmetric
Coxeter plane
In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter.
Definitions
Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
graphs of these polytopes.
The B8 family
The B
8 family has symmetry of order 10321920 (8
factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times (n-1) \times (n-2) \t ...
x 2
8). There are 255 forms based on all permutations of the
Coxeter-Dynkin diagrams with one or more rings.
See also a
list of B8 polytopes for symmetric
Coxeter plane
In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter.
Definitions
Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
graphs of these polytopes.
{, class="wikitable collapsible collapsed"
!colspan=13, B
8 uniform polytopes
, -
!rowspan=2, #
!rowspan=2,
Coxeter-Dynkin diagram
!rowspan=2,
Schläfli
symbol
!rowspan=2, Name
!colspan=8, Element counts
, -
! 7, , 6, , 5, , 4, , 3, , 2, , 1, , 0
, - align=center BGCOLOR="#f0e0e0"
!1
, , , t
0{3
6,4}, ,
8-orthoplex
In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''.
It has two const ...
Diacosipentacontahexazetton (ek), , 256, , 1024, , 1792, , 1792, , 1120, , 448, , 112, , 16
, - align=center BGCOLOR="#f0e0e0"
!2
, , , t
1{3
6,4}, ,
Rectified 8-orthoplex
In eight-dimensional geometry, a rectified 8-orthoplex is a convex uniform 8-polytope, being a rectification of the regular 8-orthoplex.
There are unique 8 degrees of rectifications, the zeroth being the 8-orthoplex, and the 7th and last being th ...
Rectified diacosipentacontahexazetton (rek), , 272, , 3072, , 8960, , 12544, , 10080, , 4928, , 1344, , 112
, - align=center BGCOLOR="#f0e0e0"
!3
, , , t
2{3
6,4}, ,
Birectified 8-orthoplexBirectified diacosipentacontahexazetton (bark), , 272, , 3184, , 16128, , 34048, , 36960, , 22400, , 6720, , 448
, - align=center BGCOLOR="#f0e0e0"
!4
, , , t
3{3
6,4}, ,
Trirectified 8-orthoplexTrirectified diacosipentacontahexazetton (tark), , 272, , 3184, , 16576, , 48384, , 71680, , 53760, , 17920, , 1120
, - align=center BGCOLOR="#e0e0f0"
!5
, , , t
3{4,3
6}, ,
Trirectified 8-cubeTrirectified octeract (tro), , 272, , 3184, , 16576, , 47712, , 80640, , 71680, , 26880, , 1792
, - align=center BGCOLOR="#e0e0f0"
!6
, , , t
2{4,3
6}, ,
Birectified 8-cubeBirectified octeract (bro), , 272, , 3184, , 14784, , 36960, , 55552, , 50176, , 21504, , 1792
, - align=center BGCOLOR="#e0e0f0"
!7
, , , t
1{4,3
6}, ,
Rectified 8-cubeRectified octeract (recto), , 272, , 2160, , 7616, , 15456, , 19712, , 16128, , 7168, , 1024
, - align=center BGCOLOR="#e0e0f0"
!8
, , , t
0{4,3
6}, ,
8-cube
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.
It is represented by Schl ...
Octeract (octo), , 16, , 112, , 448, , 1120, , 1792, , 1792, , 1024, , 256
, - align=center BGCOLOR="#f0e0e0"
!9
, , , t
0,1{3
6,4}, ,
Truncated 8-orthoplex
In eight-dimensional geometry, a truncated 8-orthoplex is a convex uniform 8-polytope, being a truncation of the regular 8-orthoplex.
There are 7 truncation for the 8-orthoplex. Vertices of the truncation 8-orthoplex are located as pairs on the e ...
Truncated diacosipentacontahexazetton (tek), , , , , , , , , , , , , , 1456, , 224
, - align=center BGCOLOR="#f0e0e0"
!10
, , , t
0,2{3
6,4}, ,
Cantellated 8-orthoplex
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
A uniform 8-polytope is one which is vertex-transitiv ...
Small rhombated diacosipentacontahexazetton (srek), , , , , , , , , , , , , , 14784, , 1344
, - align=center BGCOLOR="#f0e0e0"
!11
, , , t
1,2{3
6,4}, ,
Bitruncated 8-orthoplexBitruncated diacosipentacontahexazetton (batek), , , , , , , , , , , , , , 8064, , 1344
, - align=center BGCOLOR="#f0e0e0"
!12
, , , t
0,3{3
6,4}, ,
Runcinated 8-orthoplex
In geometry, runcination is an operation that cuts a regular polytope (or honeycomb) simultaneously along the faces, edges, and vertices, creating new facets in place of the original face, edge, and vertex centers.
It is a higher order truncatio ...
Small prismated diacosipentacontahexazetton (spek), , , , , , , , , , , , , , 60480, , 4480
, - align=center BGCOLOR="#f0e0e0"
!13
, , , t
1,3{3
6,4}, ,
Bicantellated 8-orthoplexSmall birhombated diacosipentacontahexazetton (sabork), , , , , , , , , , , , , , 67200, , 6720
, - align=center BGCOLOR="#f0e0e0"
!14
, , , t
2,3{3
6,4}, ,
Tritruncated 8-orthoplexTritruncated diacosipentacontahexazetton (tatek), , , , , , , , , , , , , , 24640, , 4480
, - align=center BGCOLOR="#f0e0e0"
!15
, , , t
0,4{3
6,4}, ,
Stericated 8-orthoplexSmall cellated diacosipentacontahexazetton (scak), , , , , , , , , , , , , , 125440, , 8960
, - align=center BGCOLOR="#f0e0e0"
!16
, , , t
1,4{3
6,4}, ,
Biruncinated 8-orthoplexSmall biprismated diacosipentacontahexazetton (sabpek), , , , , , , , , , , , , , 215040, , 17920
, - align=center BGCOLOR="#f0e0e0"
!17
, , , t
2,4{3
6,4}, ,
Tricantellated 8-orthoplexSmall trirhombated diacosipentacontahexazetton (satrek), , , , , , , , , , , , , , 161280, , 17920
, - align=center BGCOLOR="#e0f0e0"
!18
, , , t
3,4{4,3
6}, ,
Quadritruncated 8-cube
In eight-dimensional geometry, a truncated 8-cube is a convex uniform 8-polytope, being a Truncation (geometry), truncation of the regular 8-cube.
There are unique 7 degrees of truncation for the 8-cube. Vertices of the truncation 8-cube are locat ...
Octeractidiacosipentacontahexazetton (oke), , , , , , , , , , , , , , 44800, , 8960
, - align=center BGCOLOR="#f0e0e0"
!19
, , , t
0,5{3
6,4}, ,
Pentellated 8-orthoplexSmall terated diacosipentacontahexazetton (setek), , , , , , , , , , , , , , 134400, , 10752
, - align=center BGCOLOR="#f0e0e0"
!20
, , , t
1,5{3
6,4}, ,
Bistericated 8-orthoplexSmall bicellated diacosipentacontahexazetton (sibcak), , , , , , , , , , , , , , 322560, , 26880
, - align=center BGCOLOR="#e0f0e0"
!21
, , , t
2,5{4,3
6}, ,
Triruncinated 8-cubeSmall triprismato-octeractidiacosipentacontahexazetton (sitpoke), , , , , , , , , , , , , , 376320, , 35840
, - align=center BGCOLOR="#e0e0f0"
!22
, , , t
2,4{4,3
6}, ,
Tricantellated 8-cubeSmall trirhombated octeract (satro), , , , , , , , , , , , , , 215040, , 26880
, - align=center BGCOLOR="#e0e0f0"
!23
, , , t
2,3{4,3
6}, ,
Tritruncated 8-cubeTritruncated octeract (tato), , , , , , , , , , , , , , 48384, , 10752
, - align=center BGCOLOR="#f0e0e0"
!24
, , , t
0,6{3
6,4}, ,
Hexicated 8-orthoplexSmall petated diacosipentacontahexazetton (supek), , , , , , , , , , , , , , 64512, , 7168
, - align=center BGCOLOR="#e0f0e0"
!25
, , , t
1,6{4,3
6}, ,
Bipentellated 8-cubeSmall biteri-octeractidiacosipentacontahexazetton (sabtoke), , , , , , , , , , , , , , 215040, , 21504
, - align=center BGCOLOR="#e0e0f0"
!26
, , , t
1,5{4,3
6}, ,
Bistericated 8-cubeSmall bicellated octeract (sobco), , , , , , , , , , , , , , 358400, , 35840
, - align=center BGCOLOR="#e0e0f0"
!27
, , , t
1,4{4,3
6}, ,
Biruncinated 8-cubeSmall biprismated octeract (sabepo), , , , , , , , , , , , , , 322560, , 35840
, - align=center BGCOLOR="#e0e0f0"
!28
, , , t
1,3{4,3
6}, ,
Bicantellated 8-cubeSmall birhombated octeract (subro), , , , , , , , , , , , , , 150528, , 21504
, - align=center BGCOLOR="#e0e0f0"
!29
, , , t
1,2{4,3
6}, ,
Bitruncated 8-cubeBitruncated octeract (bato), , , , , , , , , , , , , , 28672, , 7168
, - align=center BGCOLOR="#e0f0e0"
!30
, , , t
0,7{4,3
6}, ,
Heptellated 8-cubeSmall exi-octeractidiacosipentacontahexazetton (saxoke), , , , , , , , , , , , , , 14336, , 2048
, - align=center BGCOLOR="#e0e0f0"
!31
, , , t
0,6{4,3
6}, ,
Hexicated 8-cubeSmall petated octeract (supo), , , , , , , , , , , , , , 64512, , 7168
, - align=center BGCOLOR="#e0e0f0"
!32
, , , t
0,5{4,3
6}, ,
Pentellated 8-cubeSmall terated octeract (soto), , , , , , , , , , , , , , 143360, , 14336
, - align=center BGCOLOR="#e0e0f0"
!33
, , , t
0,4{4,3
6}, ,
Stericated 8-cubeSmall cellated octeract (soco), , , , , , , , , , , , , , 179200, , 17920
, - align=center BGCOLOR="#e0e0f0"
!34
, , , t
0,3{4,3
6}, ,
Runcinated 8-cubeSmall prismated octeract (sopo), , , , , , , , , , , , , , 129024, , 14336
, - align=center BGCOLOR="#e0e0f0"
!35
, , , t
0,2{4,3
6}, ,
Cantellated 8-cubeSmall rhombated octeract (soro), , , , , , , , , , , , , , 50176, , 7168
, - align=center BGCOLOR="#e0e0f0"
!36
, , , t
0,1{4,3
6}, ,
Truncated 8-cubeTruncated octeract (tocto), , , , , , , , , , , , , , 8192, , 2048
, - align=center BGCOLOR="#f0e0e0"
!37
, , , t
0,1,2{3
6,4}, ,
Cantitruncated 8-orthoplexGreat rhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 16128, , 2688
, - align=center BGCOLOR="#f0e0e0"
!38
, , , t
0,1,3{3
6,4}, ,
Runcitruncated 8-orthoplexPrismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 127680, , 13440
, - align=center BGCOLOR="#f0e0e0"
!39
, , , t
0,2,3{3
6,4}, ,
Runcicantellated 8-orthoplexPrismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 80640, , 13440
, - align=center BGCOLOR="#f0e0e0"
!40
, , , t
1,2,3{3
6,4}, ,
Bicantitruncated 8-orthoplexGreat birhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 73920, , 13440
, - align=center BGCOLOR="#f0e0e0"
!41
, , , t
0,1,4{3
6,4}, ,
Steritruncated 8-orthoplexCellitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 394240, , 35840
, - align=center BGCOLOR="#f0e0e0"
!42
, , , t
0,2,4{3
6,4}, ,
Stericantellated 8-orthoplexCellirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 483840, , 53760
, - align=center BGCOLOR="#f0e0e0"
!43
, , , t
1,2,4{3
6,4}, ,
Biruncitruncated 8-orthoplexBiprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 430080, , 53760
, - align=center BGCOLOR="#f0e0e0"
!44
, , , t
0,3,4{3
6,4}, ,
Steriruncinated 8-orthoplexCelliprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 215040, , 35840
, - align=center BGCOLOR="#f0e0e0"
!45
, , , t
1,3,4{3
6,4}, ,
Biruncicantellated 8-orthoplexBiprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 322560, , 53760
, - align=center BGCOLOR="#f0e0e0"
!46
, , , t
2,3,4{3
6,4}, ,
Tricantitruncated 8-orthoplexGreat trirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 179200, , 35840
, - align=center BGCOLOR="#f0e0e0"
!47
, , , t
0,1,5{3
6,4}, ,
Pentitruncated 8-orthoplexTeritruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 564480, , 53760
, - align=center BGCOLOR="#f0e0e0"
!48
, , , t
0,2,5{3
6,4}, ,
Penticantellated 8-orthoplexTerirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1075200, , 107520
, - align=center BGCOLOR="#f0e0e0"
!49
, , , t
1,2,5{3
6,4}, ,
Bisteritruncated 8-orthoplexBicellitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 913920, , 107520
, - align=center BGCOLOR="#f0e0e0"
!50
, , , t
0,3,5{3
6,4}, ,
Pentiruncinated 8-orthoplexTeriprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 913920, , 107520
, - align=center BGCOLOR="#f0e0e0"
!51
, , , t
1,3,5{3
6,4}, ,
Bistericantellated 8-orthoplexBicellirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1290240, , 161280
, - align=center BGCOLOR="#f0e0e0"
!52
, , , t
2,3,5{3
6,4}, ,
Triruncitruncated 8-orthoplexTriprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 698880, , 107520
, - align=center BGCOLOR="#f0e0e0"
!53
, , , t
0,4,5{3
6,4}, ,
Pentistericated 8-orthoplexTericellated diacosipentacontahexazetton, , , , , , , , , , , , , , 322560, , 53760
, - align=center BGCOLOR="#f0e0e0"
!54
, , , t
1,4,5{3
6,4}, ,
Bisteriruncinated 8-orthoplexBicelliprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 698880, , 107520
, - align=center BGCOLOR="#e0e0f0"
!55
, , , t
2,3,5{4,3
6}, ,
Triruncitruncated 8-cubeTriprismatotruncated octeract, , , , , , , , , , , , , , 645120, , 107520
, - align=center BGCOLOR="#e0e0f0"
!56
, , , t
2,3,4{4,3
6}, ,
Tricantitruncated 8-cubeGreat trirhombated octeract, , , , , , , , , , , , , , 241920, , 53760
, - align=center BGCOLOR="#f0e0e0"
!57
, , , t
0,1,6{3
6,4}, ,
Hexitruncated 8-orthoplexPetitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 344064, , 43008
, - align=center BGCOLOR="#f0e0e0"
!58
, , , t
0,2,6{3
6,4}, ,
Hexicantellated 8-orthoplexPetirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 967680, , 107520
, - align=center BGCOLOR="#f0e0e0"
!59
, , , t
1,2,6{3
6,4}, ,
Bipentitruncated 8-orthoplexBiteritruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 752640, , 107520
, - align=center BGCOLOR="#f0e0e0"
!60
, , , t
0,3,6{3
6,4}, ,
Hexiruncinated 8-orthoplexPetiprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 1290240, , 143360
, - align=center BGCOLOR="#f0e0e0"
!61
, , , t
1,3,6{3
6,4}, ,
Bipenticantellated 8-orthoplexBiterirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1720320, , 215040
, - align=center BGCOLOR="#e0e0f0"
!62
, , , t
1,4,5{4,3
6}, ,
Bisteriruncinated 8-cubeBicelliprismated octeract, , , , , , , , , , , , , , 860160, , 143360
, - align=center BGCOLOR="#f0e0e0"
!63
, , , t
0,4,6{3
6,4}, ,
Hexistericated 8-orthoplexPeticellated diacosipentacontahexazetton, , , , , , , , , , , , , , 860160, , 107520
, - align=center BGCOLOR="#e0e0f0"
!64
, , , t
1,3,6{4,3
6}, ,
Bipenticantellated 8-cubeBiterirhombated octeract, , , , , , , , , , , , , , 1720320, , 215040
, - align=center BGCOLOR="#e0e0f0"
!65
, , , t
1,3,5{4,3
6}, ,
Bistericantellated 8-cubeBicellirhombated octeract, , , , , , , , , , , , , , 1505280, , 215040
, - align=center BGCOLOR="#e0e0f0"
!66
, , , t
1,3,4{4,3
6}, ,
Biruncicantellated 8-cubeBiprismatorhombated octeract, , , , , , , , , , , , , , 537600, , 107520
, - align=center BGCOLOR="#f0e0e0"
!67
, , , t
0,5,6{3
6,4}, ,
Hexipentellated 8-orthoplexPetiterated diacosipentacontahexazetton, , , , , , , , , , , , , , 258048, , 43008
, - align=center BGCOLOR="#e0e0f0"
!68
, , , t
1,2,6{4,3
6}, ,
Bipentitruncated 8-cubeBiteritruncated octeract, , , , , , , , , , , , , , 752640, , 107520
, - align=center BGCOLOR="#e0e0f0"
!69
, , , t
1,2,5{4,3
6}, ,
Bisteritruncated 8-cubeBicellitruncated octeract, , , , , , , , , , , , , , 1003520, , 143360
, - align=center BGCOLOR="#e0e0f0"
!70
, , , t
1,2,4{4,3
6}, ,
Biruncitruncated 8-cubeBiprismatotruncated octeract, , , , , , , , , , , , , , 645120, , 107520
, - align=center BGCOLOR="#e0e0f0"
!71
, , , t
1,2,3{4,3
6}, ,
Bicantitruncated 8-cubeGreat birhombated octeract, , , , , , , , , , , , , , 172032, , 43008
, - align=center BGCOLOR="#f0e0e0"
!72
, , , t
0,1,7{3
6,4}, ,
Heptitruncated 8-orthoplexExitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 93184, , 14336
, - align=center BGCOLOR="#f0e0e0"
!73
, , , t
0,2,7{3
6,4}, ,
Hepticantellated 8-orthoplexExirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 365568, , 43008
, - align=center BGCOLOR="#e0e0f0"
!74
, , , t
0,5,6{4,3
6}, ,
Hexipentellated 8-cubePetiterated octeract, , , , , , , , , , , , , , 258048, , 43008
, - align=center BGCOLOR="#f0e0e0"
!75
, , , t
0,3,7{3
6,4}, ,
Heptiruncinated 8-orthoplexExiprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 680960, , 71680
, - align=center BGCOLOR="#e0e0f0"
!76
, , , t
0,4,6{4,3
6}, ,
Hexistericated 8-cubePeticellated octeract, , , , , , , , , , , , , , 860160, , 107520
, - align=center BGCOLOR="#e0e0f0"
!77
, , , t
0,4,5{4,3
6}, ,
Pentistericated 8-cubeTericellated octeract, , , , , , , , , , , , , , 394240, , 71680
, - align=center BGCOLOR="#e0e0f0"
!78
, , , t
0,3,7{4,3
6}, ,
Heptiruncinated 8-cubeExiprismated octeract, , , , , , , , , , , , , , 680960, , 71680
, - align=center BGCOLOR="#e0e0f0"
!79
, , , t
0,3,6{4,3
6}, ,
Hexiruncinated 8-cubePetiprismated octeract, , , , , , , , , , , , , , 1290240, , 143360
, - align=center BGCOLOR="#e0e0f0"
!80
, , , t
0,3,5{4,3
6}, ,
Pentiruncinated 8-cubeTeriprismated octeract, , , , , , , , , , , , , , 1075200, , 143360
, - align=center BGCOLOR="#e0e0f0"
!81
, , , t
0,3,4{4,3
6}, ,
Steriruncinated 8-cubeCelliprismated octeract, , , , , , , , , , , , , , 358400, , 71680
, - align=center BGCOLOR="#e0e0f0"
!82
, , , t
0,2,7{4,3
6}, ,
Hepticantellated 8-cubeExirhombated octeract, , , , , , , , , , , , , , 365568, , 43008
, - align=center BGCOLOR="#e0e0f0"
!83
, , , t
0,2,6{4,3
6}, ,
Hexicantellated 8-cubePetirhombated octeract, , , , , , , , , , , , , , 967680, , 107520
, - align=center BGCOLOR="#e0e0f0"
!84
, , , t
0,2,5{4,3
6}, ,
Penticantellated 8-cubeTerirhombated octeract, , , , , , , , , , , , , , 1218560, , 143360
, - align=center BGCOLOR="#e0e0f0"
!85
, , , t
0,2,4{4,3
6}, ,
Stericantellated 8-cubeCellirhombated octeract, , , , , , , , , , , , , , 752640, , 107520
, - align=center BGCOLOR="#e0e0f0"
!86
, , , t
0,2,3{4,3
6}, ,
Runcicantellated 8-cubePrismatorhombated octeract, , , , , , , , , , , , , , 193536, , 43008
, - align=center BGCOLOR="#e0e0f0"
!87
, , , t
0,1,7{4,3
6}, ,
Heptitruncated 8-cubeExitruncated octeract, , , , , , , , , , , , , , 93184, , 14336
, - align=center BGCOLOR="#e0e0f0"
!88
, , , t
0,1,6{4,3
6}, ,
Hexitruncated 8-cubePetitruncated octeract, , , , , , , , , , , , , , 344064, , 43008
, - align=center BGCOLOR="#e0e0f0"
!89
, , , t
0,1,5{4,3
6}, ,
Pentitruncated 8-cubeTeritruncated octeract, , , , , , , , , , , , , , 609280, , 71680
, - align=center BGCOLOR="#e0e0f0"
!90
, , , t
0,1,4{4,3
6}, ,
Steritruncated 8-cubeCellitruncated octeract, , , , , , , , , , , , , , 573440, , 71680
, - align=center BGCOLOR="#e0e0f0"
!91
, , , t
0,1,3{4,3
6}, ,
Runcitruncated 8-cubePrismatotruncated octeract, , , , , , , , , , , , , , 279552, , 43008
, - align=center BGCOLOR="#e0e0f0"
!92
, , , t
0,1,2{4,3
6}, ,
Cantitruncated 8-cubeGreat rhombated octeract, , , , , , , , , , , , , , 57344, , 14336
, - align=center BGCOLOR="#f0e0e0"
!93
, , , t
0,1,2,3{3
6,4}, ,
Runcicantitruncated 8-orthoplexGreat prismated diacosipentacontahexazetton, , , , , , , , , , , , , , 147840, , 26880
, - align=center BGCOLOR="#f0e0e0"
!94
, , , t
0,1,2,4{3
6,4}, ,
Stericantitruncated 8-orthoplexCelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 860160, , 107520
, - align=center BGCOLOR="#f0e0e0"
!95
, , , t
0,1,3,4{3
6,4}, ,
Steriruncitruncated 8-orthoplexCelliprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 591360, , 107520
, - align=center BGCOLOR="#f0e0e0"
!96
, , , t
0,2,3,4{3
6,4}, ,
Steriruncicantellated 8-orthoplexCelliprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 591360, , 107520
, - align=center BGCOLOR="#f0e0e0"
!97
, , , t
1,2,3,4{3
6,4}, ,
Biruncicantitruncated 8-orthoplexGreat biprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 537600, , 107520
, - align=center BGCOLOR="#f0e0e0"
!98
, , , t
0,1,2,5{3
6,4}, ,
Penticantitruncated 8-orthoplexTerigreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1827840, , 215040
, - align=center BGCOLOR="#f0e0e0"
!99
, , , t
0,1,3,5{3
6,4}, ,
Pentiruncitruncated 8-orthoplexTeriprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 2419200, , 322560
, - align=center BGCOLOR="#f0e0e0"
!100
, , , t
0,2,3,5{3
6,4}, ,
Pentiruncicantellated 8-orthoplexTeriprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 2257920, , 322560
, - align=center BGCOLOR="#f0e0e0"
!101
, , , t
1,2,3,5{3
6,4}, ,
Bistericantitruncated 8-orthoplexBicelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 2096640, , 322560
, - align=center BGCOLOR="#f0e0e0"
!102
, , , t
0,1,4,5{3
6,4}, ,
Pentisteritruncated 8-orthoplexTericellitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 1182720, , 215040
, - align=center BGCOLOR="#f0e0e0"
!103
, , , t
0,2,4,5{3
6,4}, ,
Pentistericantellated 8-orthoplexTericellirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1935360, , 322560
, - align=center BGCOLOR="#f0e0e0"
!104
, , , t
1,2,4,5{3
6,4}, ,
Bisteriruncitruncated 8-orthoplexBicelliprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 1612800, , 322560
, - align=center BGCOLOR="#f0e0e0"
!105
, , , t
0,3,4,5{3
6,4}, ,
Pentisteriruncinated 8-orthoplexTericelliprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 1182720, , 215040
, - align=center BGCOLOR="#f0e0e0"
!106
, , , t
1,3,4,5{3
6,4}, ,
Bisteriruncicantellated 8-orthoplexBicelliprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1774080, , 322560
, - align=center BGCOLOR="#e0f0e0"
!107
, , , t
2,3,4,5{4,3
6}, ,
Triruncicantitruncated 8-cubeGreat triprismato-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 967680, , 215040
, - align=center BGCOLOR="#f0e0e0"
!108
, , , t
0,1,2,6{3
6,4}, ,
Hexicantitruncated 8-orthoplexPetigreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1505280, , 215040
, - align=center BGCOLOR="#f0e0e0"
!109
, , , t
0,1,3,6{3
6,4}, ,
Hexiruncitruncated 8-orthoplexPetiprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 3225600, , 430080
, - align=center BGCOLOR="#f0e0e0"
!110
, , , t
0,2,3,6{3
6,4}, ,
Hexiruncicantellated 8-orthoplexPetiprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 2795520, , 430080
, - align=center BGCOLOR="#f0e0e0"
!111
, , , t
1,2,3,6{3
6,4}, ,
Bipenticantitruncated 8-orthoplexBiterigreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 2580480, , 430080
, - align=center BGCOLOR="#f0e0e0"
!112
, , , t
0,1,4,6{3
6,4}, ,
Hexisteritruncated 8-orthoplexPeticellitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 3010560, , 430080
, - align=center BGCOLOR="#f0e0e0"
!113
, , , t
0,2,4,6{3
6,4}, ,
Hexistericantellated 8-orthoplexPeticellirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 4515840, , 645120
, - align=center BGCOLOR="#f0e0e0"
!114
, , , t
1,2,4,6{3
6,4}, ,
Bipentiruncitruncated 8-orthoplexBiteriprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 3870720, , 645120
, - align=center BGCOLOR="#f0e0e0"
!115
, , , t
0,3,4,6{3
6,4}, ,
Hexisteriruncinated 8-orthoplexPeticelliprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 2580480, , 430080
, - align=center BGCOLOR="#e0f0e0"
!116
, , , t
1,3,4,6{4,3
6}, ,
Bipentiruncicantellated 8-cubeBiteriprismatorhombi-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 3870720, , 645120
, - align=center BGCOLOR="#e0e0f0"
!117
, , , t
1,3,4,5{4,3
6}, ,
Bisteriruncicantellated 8-cubeBicelliprismatorhombated octeract, , , , , , , , , , , , , , 2150400, , 430080
, - align=center BGCOLOR="#f0e0e0"
!118
, , , t
0,1,5,6{3
6,4}, ,
Hexipentitruncated 8-orthoplexPetiteritruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 1182720, , 215040
, - align=center BGCOLOR="#f0e0e0"
!119
, , , t
0,2,5,6{3
6,4}, ,
Hexipenticantellated 8-orthoplexPetiterirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 2795520, , 430080
, - align=center BGCOLOR="#e0f0e0"
!120
, , , t
1,2,5,6{4,3
6}, ,
Bipentisteritruncated 8-cubeBitericellitrunki-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 2150400, , 430080
, - align=center BGCOLOR="#f0e0e0"
!121
, , , t
0,3,5,6{3
6,4}, ,
Hexipentiruncinated 8-orthoplexPetiteriprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 2795520, , 430080
, - align=center BGCOLOR="#e0e0f0"
!122
, , , t
1,2,4,6{4,3
6}, ,
Bipentiruncitruncated 8-cubeBiteriprismatotruncated octeract, , , , , , , , , , , , , , 3870720, , 645120
, - align=center BGCOLOR="#e0e0f0"
!123
, , , t
1,2,4,5{4,3
6}, ,
Bisteriruncitruncated 8-cubeBicelliprismatotruncated octeract, , , , , , , , , , , , , , 1935360, , 430080
, - align=center BGCOLOR="#f0e0e0"
!124
, , , t
0,4,5,6{3
6,4}, ,
Hexipentistericated 8-orthoplexPetitericellated diacosipentacontahexazetton, , , , , , , , , , , , , , 1182720, , 215040
, - align=center BGCOLOR="#e0e0f0"
!125
, , , t
1,2,3,6{4,3
6}, ,
Bipenticantitruncated 8-cubeBiterigreatorhombated octeract, , , , , , , , , , , , , , 2580480, , 430080
, - align=center BGCOLOR="#e0e0f0"
!126
, , , t
1,2,3,5{4,3
6}, ,
Bistericantitruncated 8-cubeBicelligreatorhombated octeract, , , , , , , , , , , , , , 2365440, , 430080
, - align=center BGCOLOR="#e0e0f0"
!127
, , , t
1,2,3,4{4,3
6}, ,
Biruncicantitruncated 8-cubeGreat biprismated octeract, , , , , , , , , , , , , , 860160, , 215040
, - align=center BGCOLOR="#f0e0e0"
!128
, , , t
0,1,2,7{3
6,4}, ,
Hepticantitruncated 8-orthoplexExigreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 516096, , 86016
, - align=center BGCOLOR="#f0e0e0"
!129
, , , t
0,1,3,7{3
6,4}, ,
Heptiruncitruncated 8-orthoplexExiprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 1612800, , 215040
, - align=center BGCOLOR="#f0e0e0"
!130
, , , t
0,2,3,7{3
6,4}, ,
Heptiruncicantellated 8-orthoplexExiprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 1290240, , 215040
, - align=center BGCOLOR="#e0e0f0"
!131
, , , t
0,4,5,6{4,3
6}, ,
Hexipentistericated 8-cubePetitericellated octeract, , , , , , , , , , , , , , 1182720, , 215040
, - align=center BGCOLOR="#f0e0e0"
!132
, , , t
0,1,4,7{3
6,4}, ,
Heptisteritruncated 8-orthoplexExicellitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 2293760, , 286720
, - align=center BGCOLOR="#f0e0e0"
!133
, , , t
0,2,4,7{3
6,4}, ,
Heptistericantellated 8-orthoplexExicellirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 3225600, , 430080
, - align=center BGCOLOR="#e0e0f0"
!134
, , , t
0,3,5,6{4,3
6}, ,
Hexipentiruncinated 8-cubePetiteriprismated octeract, , , , , , , , , , , , , , 2795520, , 430080
, - align=center BGCOLOR="#e0f0e0"
!135
, , , t
0,3,4,7{4,3
6}, ,
Heptisteriruncinated 8-cubeExicelliprismato-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 1720320, , 286720
, - align=center BGCOLOR="#e0e0f0"
!136
, , , t
0,3,4,6{4,3
6}, ,
Hexisteriruncinated 8-cubePeticelliprismated octeract, , , , , , , , , , , , , , 2580480, , 430080
, - align=center BGCOLOR="#e0e0f0"
!137
, , , t
0,3,4,5{4,3
6}, ,
Pentisteriruncinated 8-cubeTericelliprismated octeract, , , , , , , , , , , , , , 1433600, , 286720
, - align=center BGCOLOR="#f0e0e0"
!138
, , , t
0,1,5,7{3
6,4}, ,
Heptipentitruncated 8-orthoplexExiteritruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 1612800, , 215040
, - align=center BGCOLOR="#e0f0e0"
!139
, , , t
0,2,5,7{4,3
6}, ,
Heptipenticantellated 8-cubeExiterirhombi-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 3440640, , 430080
, - align=center BGCOLOR="#e0e0f0"
!140
, , , t
0,2,5,6{4,3
6}, ,
Hexipenticantellated 8-cubePetiterirhombated octeract, , , , , , , , , , , , , , 2795520, , 430080
, - align=center BGCOLOR="#e0e0f0"
!141
, , , t
0,2,4,7{4,3
6}, ,
Heptistericantellated 8-cubeExicellirhombated octeract, , , , , , , , , , , , , , 3225600, , 430080
, - align=center BGCOLOR="#e0e0f0"
!142
, , , t
0,2,4,6{4,3
6}, ,
Hexistericantellated 8-cubePeticellirhombated octeract, , , , , , , , , , , , , , 4515840, , 645120
, - align=center BGCOLOR="#e0e0f0"
!143
, , , t
0,2,4,5{4,3
6}, ,
Pentistericantellated 8-cubeTericellirhombated octeract, , , , , , , , , , , , , , 2365440, , 430080
, - align=center BGCOLOR="#e0e0f0"
!144
, , , t
0,2,3,7{4,3
6}, ,
Heptiruncicantellated 8-cubeExiprismatorhombated octeract, , , , , , , , , , , , , , 1290240, , 215040
, - align=center BGCOLOR="#e0e0f0"
!145
, , , t
0,2,3,6{4,3
6}, ,
Hexiruncicantellated 8-cubePetiprismatorhombated octeract, , , , , , , , , , , , , , 2795520, , 430080
, - align=center BGCOLOR="#e0e0f0"
!146
, , , t
0,2,3,5{4,3
6}, ,
Pentiruncicantellated 8-cubeTeriprismatorhombated octeract, , , , , , , , , , , , , , 2580480, , 430080
, - align=center BGCOLOR="#e0e0f0"
!147
, , , t
0,2,3,4{4,3
6}, ,
Steriruncicantellated 8-cubeCelliprismatorhombated octeract, , , , , , , , , , , , , , 967680, , 215040
, - align=center BGCOLOR="#e0f0e0"
!148
, , , t
0,1,6,7{4,3
6}, ,
Heptihexitruncated 8-cubeExipetitrunki-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 516096, , 86016
, - align=center BGCOLOR="#e0e0f0"
!149
, , , t
0,1,5,7{4,3
6}, ,
Heptipentitruncated 8-cubeExiteritruncated octeract, , , , , , , , , , , , , , 1612800, , 215040
, - align=center BGCOLOR="#e0e0f0"
!150
, , , t
0,1,5,6{4,3
6}, ,
Hexipentitruncated 8-cubePetiteritruncated octeract, , , , , , , , , , , , , , 1182720, , 215040
, - align=center BGCOLOR="#e0e0f0"
!151
, , , t
0,1,4,7{4,3
6}, ,
Heptisteritruncated 8-cubeExicellitruncated octeract, , , , , , , , , , , , , , 2293760, , 286720
, - align=center BGCOLOR="#e0e0f0"
!152
, , , t
0,1,4,6{4,3
6}, ,
Hexisteritruncated 8-cubePeticellitruncated octeract, , , , , , , , , , , , , , 3010560, , 430080
, - align=center BGCOLOR="#e0e0f0"
!153
, , , t
0,1,4,5{4,3
6}, ,
Pentisteritruncated 8-cubeTericellitruncated octeract, , , , , , , , , , , , , , 1433600, , 286720
, - align=center BGCOLOR="#e0e0f0"
!154
, , , t
0,1,3,7{4,3
6}, ,
Heptiruncitruncated 8-cubeExiprismatotruncated octeract, , , , , , , , , , , , , , 1612800, , 215040
, - align=center BGCOLOR="#e0e0f0"
!155
, , , t
0,1,3,6{4,3
6}, ,
Hexiruncitruncated 8-cubePetiprismatotruncated octeract, , , , , , , , , , , , , , 3225600, , 430080
, - align=center BGCOLOR="#e0e0f0"
!156
, , , t
0,1,3,5{4,3
6}, ,
Pentiruncitruncated 8-cubeTeriprismatotruncated octeract, , , , , , , , , , , , , , 2795520, , 430080
, - align=center BGCOLOR="#e0e0f0"
!157
, , , t
0,1,3,4{4,3
6}, ,
Steriruncitruncated 8-cubeCelliprismatotruncated octeract, , , , , , , , , , , , , , 967680, , 215040
, - align=center BGCOLOR="#e0e0f0"
!158
, , , t
0,1,2,7{4,3
6}, ,
Hepticantitruncated 8-cubeExigreatorhombated octeract, , , , , , , , , , , , , , 516096, , 86016
, - align=center BGCOLOR="#e0e0f0"
!159
, , , t
0,1,2,6{4,3
6}, ,
Hexicantitruncated 8-cubePetigreatorhombated octeract, , , , , , , , , , , , , , 1505280, , 215040
, - align=center BGCOLOR="#e0e0f0"
!160
, , , t
0,1,2,5{4,3
6}, ,
Penticantitruncated 8-cubeTerigreatorhombated octeract, , , , , , , , , , , , , , 2007040, , 286720
, - align=center BGCOLOR="#e0e0f0"
!161
, , , t
0,1,2,4{4,3
6}, ,
Stericantitruncated 8-cubeCelligreatorhombated octeract, , , , , , , , , , , , , , 1290240, , 215040
, - align=center BGCOLOR="#e0e0f0"
!162
, , , t
0,1,2,3{4,3
6}, ,
Runcicantitruncated 8-cubeGreat prismated octeract, , , , , , , , , , , , , , 344064, , 86016
, - align=center BGCOLOR="#f0e0e0"
!163
, , , t
0,1,2,3,4{3
6,4}, ,
Steriruncicantitruncated 8-orthoplexGreat cellated diacosipentacontahexazetton, , , , , , , , , , , , , , 1075200, , 215040
, - align=center BGCOLOR="#f0e0e0"
!164
, , , t
0,1,2,3,5{3
6,4}, ,
Pentiruncicantitruncated 8-orthoplexTerigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 4193280, , 645120
, - align=center BGCOLOR="#f0e0e0"
!165
, , , t
0,1,2,4,5{3
6,4}, ,
Pentistericantitruncated 8-orthoplexTericelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 3225600, , 645120
, - align=center BGCOLOR="#f0e0e0"
!166
, , , t
0,1,3,4,5{3
6,4}, ,
Pentisteriruncitruncated 8-orthoplexTericelliprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 3225600, , 645120
, - align=center BGCOLOR="#f0e0e0"
!167
, , , t
0,2,3,4,5{3
6,4}, ,
Pentisteriruncicantellated 8-orthoplexTericelliprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 3225600, , 645120
, - align=center BGCOLOR="#f0e0e0"
!168
, , , t
1,2,3,4,5{3
6,4}, ,
Bisteriruncicantitruncated 8-orthoplexGreat bicellated diacosipentacontahexazetton, , , , , , , , , , , , , , 2903040, , 645120
, - align=center BGCOLOR="#f0e0e0"
!169
, , , t
0,1,2,3,6{3
6,4}, ,
Hexiruncicantitruncated 8-orthoplexPetigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 5160960, , 860160
, - align=center BGCOLOR="#f0e0e0"
!170
, , , t
0,1,2,4,6{3
6,4}, ,
Hexistericantitruncated 8-orthoplexPeticelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 7741440, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!171
, , , t
0,1,3,4,6{3
6,4}, ,
Hexisteriruncitruncated 8-orthoplexPeticelliprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!172
, , , t
0,2,3,4,6{3
6,4}, ,
Hexisteriruncicantellated 8-orthoplexPeticelliprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!173
, , , t
1,2,3,4,6{3
6,4}, ,
Bipentiruncicantitruncated 8-orthoplexBiterigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 6451200, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!174
, , , t
0,1,2,5,6{3
6,4}, ,
Hexipenticantitruncated 8-orthoplexPetiterigreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 4300800, , 860160
, - align=center BGCOLOR="#f0e0e0"
!175
, , , t
0,1,3,5,6{3
6,4}, ,
Hexipentiruncitruncated 8-orthoplexPetiteriprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!176
, , , t
0,2,3,5,6{3
6,4}, ,
Hexipentiruncicantellated 8-orthoplexPetiteriprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 6451200, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!177
, , , t
1,2,3,5,6{3
6,4}, ,
Bipentistericantitruncated 8-orthoplexBitericelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 5806080, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!178
, , , t
0,1,4,5,6{3
6,4}, ,
Hexipentisteritruncated 8-orthoplexPetitericellitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 4300800, , 860160
, - align=center BGCOLOR="#f0e0e0"
!179
, , , t
0,2,4,5,6{3
6,4}, ,
Hexipentistericantellated 8-orthoplexPetitericellirhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!180
, , , t
1,2,3,5,6{4,3
6}, ,
Bipentistericantitruncated 8-cubeBitericelligreatorhombated octeract, , , , , , , , , , , , , , 5806080, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!181
, , , t
0,3,4,5,6{3
6,4}, ,
Hexipentisteriruncinated 8-orthoplexPetitericelliprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 4300800, , 860160
, - align=center BGCOLOR="#e0e0f0"
!182
, , , t
1,2,3,4,6{4,3
6}, ,
Bipentiruncicantitruncated 8-cubeBiterigreatoprismated octeract, , , , , , , , , , , , , , 6451200, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!183
, , , t
1,2,3,4,5{4,3
6}, ,
Bisteriruncicantitruncated 8-cubeGreat bicellated octeract, , , , , , , , , , , , , , 3440640, , 860160
, - align=center BGCOLOR="#f0e0e0"
!184
, , , t
0,1,2,3,7{3
6,4}, ,
Heptiruncicantitruncated 8-orthoplexExigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 2365440, , 430080
, - align=center BGCOLOR="#f0e0e0"
!185
, , , t
0,1,2,4,7{3
6,4}, ,
Heptistericantitruncated 8-orthoplexExicelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 5591040, , 860160
, - align=center BGCOLOR="#f0e0e0"
!186
, , , t
0,1,3,4,7{3
6,4}, ,
Heptisteriruncitruncated 8-orthoplexExicelliprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 4730880, , 860160
, - align=center BGCOLOR="#f0e0e0"
!187
, , , t
0,2,3,4,7{3
6,4}, ,
Heptisteriruncicantellated 8-orthoplexExicelliprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 4730880, , 860160
, - align=center BGCOLOR="#e0e0f0"
!188
, , , t
0,3,4,5,6{4,3
6}, ,
Hexipentisteriruncinated 8-cubePetitericelliprismated octeract, , , , , , , , , , , , , , 4300800, , 860160
, - align=center BGCOLOR="#f0e0e0"
!189
, , , t
0,1,2,5,7{3
6,4}, ,
Heptipenticantitruncated 8-orthoplexExiterigreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 5591040, , 860160
, - align=center BGCOLOR="#f0e0e0"
!190
, , , t
0,1,3,5,7{3
6,4}, ,
Heptipentiruncitruncated 8-orthoplexExiteriprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 8386560, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!191
, , , t
0,2,3,5,7{3
6,4}, ,
Heptipentiruncicantellated 8-orthoplexExiteriprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 7741440, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!192
, , , t
0,2,4,5,6{4,3
6}, ,
Hexipentistericantellated 8-cubePetitericellirhombated octeract, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!193
, , , t
0,1,4,5,7{3
6,4}, ,
Heptipentisteritruncated 8-orthoplexExitericellitruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 4730880, , 860160
, - align=center BGCOLOR="#e0e0f0"
!194
, , , t
0,2,3,5,7{4,3
6}, ,
Heptipentiruncicantellated 8-cubeExiteriprismatorhombated octeract, , , , , , , , , , , , , , 7741440, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!195
, , , t
0,2,3,5,6{4,3
6}, ,
Hexipentiruncicantellated 8-cubePetiteriprismatorhombated octeract, , , , , , , , , , , , , , 6451200, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!196
, , , t
0,2,3,4,7{4,3
6}, ,
Heptisteriruncicantellated 8-cubeExicelliprismatorhombated octeract, , , , , , , , , , , , , , 4730880, , 860160
, - align=center BGCOLOR="#e0e0f0"
!197
, , , t
0,2,3,4,6{4,3
6}, ,
Hexisteriruncicantellated 8-cubePeticelliprismatorhombated octeract, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!198
, , , t
0,2,3,4,5{4,3
6}, ,
Pentisteriruncicantellated 8-cubeTericelliprismatorhombated octeract, , , , , , , , , , , , , , 3870720, , 860160
, - align=center BGCOLOR="#f0e0e0"
!199
, , , t
0,1,2,6,7{3
6,4}, ,
Heptihexicantitruncated 8-orthoplexExipetigreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 2365440, , 430080
, - align=center BGCOLOR="#f0e0e0"
!200
, , , t
0,1,3,6,7{3
6,4}, ,
Heptihexiruncitruncated 8-orthoplexExipetiprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 5591040, , 860160
, - align=center BGCOLOR="#e0e0f0"
!201
, , , t
0,1,4,5,7{4,3
6}, ,
Heptipentisteritruncated 8-cubeExitericellitruncated octeract, , , , , , , , , , , , , , 4730880, , 860160
, - align=center BGCOLOR="#e0e0f0"
!202
, , , t
0,1,4,5,6{4,3
6}, ,
Hexipentisteritruncated 8-cubePetitericellitruncated octeract, , , , , , , , , , , , , , 4300800, , 860160
, - align=center BGCOLOR="#e0e0f0"
!203
, , , t
0,1,3,6,7{4,3
6}, ,
Heptihexiruncitruncated 8-cubeExipetiprismatotruncated octeract, , , , , , , , , , , , , , 5591040, , 860160
, - align=center BGCOLOR="#e0e0f0"
!204
, , , t
0,1,3,5,7{4,3
6}, ,
Heptipentiruncitruncated 8-cubeExiteriprismatotruncated octeract, , , , , , , , , , , , , , 8386560, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!205
, , , t
0,1,3,5,6{4,3
6}, ,
Hexipentiruncitruncated 8-cubePetiteriprismatotruncated octeract, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!206
, , , t
0,1,3,4,7{4,3
6}, ,
Heptisteriruncitruncated 8-cubeExicelliprismatotruncated octeract, , , , , , , , , , , , , , 4730880, , 860160
, - align=center BGCOLOR="#e0e0f0"
!207
, , , t
0,1,3,4,6{4,3
6}, ,
Hexisteriruncitruncated 8-cubePeticelliprismatotruncated octeract, , , , , , , , , , , , , , 7096320, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!208
, , , t
0,1,3,4,5{4,3
6}, ,
Pentisteriruncitruncated 8-cubeTericelliprismatotruncated octeract, , , , , , , , , , , , , , 3870720, , 860160
, - align=center BGCOLOR="#e0e0f0"
!209
, , , t
0,1,2,6,7{4,3
6}, ,
Heptihexicantitruncated 8-cubeExipetigreatorhombated octeract, , , , , , , , , , , , , , 2365440, , 430080
, - align=center BGCOLOR="#e0e0f0"
!210
, , , t
0,1,2,5,7{4,3
6}, ,
Heptipenticantitruncated 8-cubeExiterigreatorhombated octeract, , , , , , , , , , , , , , 5591040, , 860160
, - align=center BGCOLOR="#e0e0f0"
!211
, , , t
0,1,2,5,6{4,3
6}, ,
Hexipenticantitruncated 8-cubePetiterigreatorhombated octeract, , , , , , , , , , , , , , 4300800, , 860160
, - align=center BGCOLOR="#e0e0f0"
!212
, , , t
0,1,2,4,7{4,3
6}, ,
Heptistericantitruncated 8-cubeExicelligreatorhombated octeract, , , , , , , , , , , , , , 5591040, , 860160
, - align=center BGCOLOR="#e0e0f0"
!213
, , , t
0,1,2,4,6{4,3
6}, ,
Hexistericantitruncated 8-cubePeticelligreatorhombated octeract, , , , , , , , , , , , , , 7741440, , 1290240
, - align=center BGCOLOR="#e0e0f0"
!214
, , , t
0,1,2,4,5{4,3
6}, ,
Pentistericantitruncated 8-cubeTericelligreatorhombated octeract, , , , , , , , , , , , , , 3870720, , 860160
, - align=center BGCOLOR="#e0e0f0"
!215
, , , t
0,1,2,3,7{4,3
6}, ,
Heptiruncicantitruncated 8-cubeExigreatoprismated octeract, , , , , , , , , , , , , , 2365440, , 430080
, - align=center BGCOLOR="#e0e0f0"
!216
, , , t
0,1,2,3,6{4,3
6}, ,
Hexiruncicantitruncated 8-cubePetigreatoprismated octeract, , , , , , , , , , , , , , 5160960, , 860160
, - align=center BGCOLOR="#e0e0f0"
!217
, , , t
0,1,2,3,5{4,3
6}, ,
Pentiruncicantitruncated 8-cubeTerigreatoprismated octeract, , , , , , , , , , , , , , 4730880, , 860160
, - align=center BGCOLOR="#e0e0f0"
!218
, , , t
0,1,2,3,4{4,3
6}, ,
Steriruncicantitruncated 8-cubeGreat cellated octeract, , , , , , , , , , , , , , 1720320, , 430080
, - align=center BGCOLOR="#f0e0e0"
!219
, , , t
0,1,2,3,4,5{3
6,4}, ,
Pentisteriruncicantitruncated 8-orthoplexGreat terated diacosipentacontahexazetton, , , , , , , , , , , , , , 5806080, , 1290240
, - align=center BGCOLOR="#f0e0e0"
!220
, , , t
0,1,2,3,4,6{3
6,4}, ,
Hexisteriruncicantitruncated 8-orthoplexPetigreatocellated diacosipentacontahexazetton, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!221
, , , t
0,1,2,3,5,6{3
6,4}, ,
Hexipentiruncicantitruncated 8-orthoplexPetiterigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!222
, , , t
0,1,2,4,5,6{3
6,4}, ,
Hexipentistericantitruncated 8-orthoplexPetitericelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!223
, , , t
0,1,3,4,5,6{3
6,4}, ,
Hexipentisteriruncitruncated 8-orthoplexPetitericelliprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!224
, , , t
0,2,3,4,5,6{3
6,4}, ,
Hexipentisteriruncicantellated 8-orthoplexPetitericelliprismatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#e0f0e0"
!225
, , , t
1,2,3,4,5,6{4,3
6}, ,
Bipentisteriruncicantitruncated 8-cubeGreat biteri-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 10321920, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!226
, , , t
0,1,2,3,4,7{3
6,4}, ,
Heptisteriruncicantitruncated 8-orthoplexExigreatocellated diacosipentacontahexazetton, , , , , , , , , , , , , , 8601600, , 1720320
, - align=center BGCOLOR="#f0e0e0"
!227
, , , t
0,1,2,3,5,7{3
6,4}, ,
Heptipentiruncicantitruncated 8-orthoplexExiterigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 14192640, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!228
, , , t
0,1,2,4,5,7{3
6,4}, ,
Heptipentistericantitruncated 8-orthoplexExitericelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!229
, , , t
0,1,3,4,5,7{3
6,4}, ,
Heptipentisteriruncitruncated 8-orthoplexExitericelliprismatotruncated diacosipentacontahexazetton, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#e0f0e0"
!230
, , , t
0,2,3,4,5,7{4,3
6}, ,
Heptipentisteriruncicantellated 8-cubeExitericelliprismatorhombi-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!231
, , , t
0,2,3,4,5,6{4,3
6}, ,
Hexipentisteriruncicantellated 8-cubePetitericelliprismatorhombated octeract, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#f0e0e0"
!232
, , , t
0,1,2,3,6,7{3
6,4}, ,
Heptihexiruncicantitruncated 8-orthoplexExipetigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 8601600, , 1720320
, - align=center BGCOLOR="#f0e0e0"
!233
, , , t
0,1,2,4,6,7{3
6,4}, ,
Heptihexistericantitruncated 8-orthoplexExipeticelligreatorhombated diacosipentacontahexazetton, , , , , , , , , , , , , , 14192640, , 2580480
, - align=center BGCOLOR="#e0f0e0"
!234
, , , t
0,1,3,4,6,7{4,3
6}, ,
Heptihexisteriruncitruncated 8-cubeExipeticelliprismatotrunki-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!235
, , , t
0,1,3,4,5,7{4,3
6}, ,
Heptipentisteriruncitruncated 8-cubeExitericelliprismatotruncated octeract, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!236
, , , t
0,1,3,4,5,6{4,3
6}, ,
Hexipentisteriruncitruncated 8-cubePetitericelliprismatotruncated octeract, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#e0f0e0"
!237
, , , t
0,1,2,5,6,7{4,3
6}, ,
Heptihexipenticantitruncated 8-cubeExipetiterigreatorhombi-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 8601600, , 1720320
, - align=center BGCOLOR="#e0e0f0"
!238
, , , t
0,1,2,4,6,7{4,3
6}, ,
Heptihexistericantitruncated 8-cubeExipeticelligreatorhombated octeract, , , , , , , , , , , , , , 14192640, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!239
, , , t
0,1,2,4,5,7{4,3
6}, ,
Heptipentistericantitruncated 8-cubeExitericelligreatorhombated octeract, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!240
, , , t
0,1,2,4,5,6{4,3
6}, ,
Hexipentistericantitruncated 8-cubePetitericelligreatorhombated octeract, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!241
, , , t
0,1,2,3,6,7{4,3
6}, ,
Heptihexiruncicantitruncated 8-cubeExipetigreatoprismated octeract, , , , , , , , , , , , , , 8601600, , 1720320
, - align=center BGCOLOR="#e0e0f0"
!242
, , , t
0,1,2,3,5,7{4,3
6}, ,
Heptipentiruncicantitruncated 8-cubeExiterigreatoprismated octeract, , , , , , , , , , , , , , 14192640, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!243
, , , t
0,1,2,3,5,6{4,3
6}, ,
Hexipentiruncicantitruncated 8-cubePetiterigreatoprismated octeract, , , , , , , , , , , , , , 11612160, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!244
, , , t
0,1,2,3,4,7{4,3
6}, ,
Heptisteriruncicantitruncated 8-cubeExigreatocellated octeract, , , , , , , , , , , , , , 8601600, , 1720320
, - align=center BGCOLOR="#e0e0f0"
!245
, , , t
0,1,2,3,4,6{4,3
6}, ,
Hexisteriruncicantitruncated 8-cubePetigreatocellated octeract, , , , , , , , , , , , , , 12902400, , 2580480
, - align=center BGCOLOR="#e0e0f0"
!246
, , , t
0,1,2,3,4,5{4,3
6}, ,
Pentisteriruncicantitruncated 8-cubeGreat terated octeract, , , , , , , , , , , , , , 6881280, , 1720320
, - align=center BGCOLOR="#f0e0e0"
!247
, , , t
0,1,2,3,4,5,6{3
6,4}, ,
Hexipentisteriruncicantitruncated 8-orthoplexGreat petated diacosipentacontahexazetton, , , , , , , , , , , , , , 20643840, , 5160960
, - align=center BGCOLOR="#f0e0e0"
!248
, , , t
0,1,2,3,4,5,7{3
6,4}, ,
Heptipentisteriruncicantitruncated 8-orthoplexExigreatoterated diacosipentacontahexazetton, , , , , , , , , , , , , , 23224320, , 5160960
, - align=center BGCOLOR="#f0e0e0"
!249
, , , t
0,1,2,3,4,6,7{3
6,4}, ,
Heptihexisteriruncicantitruncated 8-orthoplexExipetigreatocellated diacosipentacontahexazetton, , , , , , , , , , , , , , 23224320, , 5160960
, - align=center BGCOLOR="#f0e0e0"
!250
, , , t
0,1,2,3,5,6,7{3
6,4}, ,
Heptihexipentiruncicantitruncated 8-orthoplexExipetiterigreatoprismated diacosipentacontahexazetton, , , , , , , , , , , , , , 23224320, , 5160960
, - align=center BGCOLOR="#e0e0f0"
!251
, , , t
0,1,2,3,5,6,7{4,3
6}, ,
Heptihexipentiruncicantitruncated 8-cubeExipetiterigreatoprismated octeract, , , , , , , , , , , , , , 23224320, , 5160960
, - align=center BGCOLOR="#e0e0f0"
!252
, , , t
0,1,2,3,4,6,7{4,3
6}, ,
Heptihexisteriruncicantitruncated 8-cubeExipetigreatocellated octeract, , , , , , , , , , , , , , 23224320, , 5160960
, - align=center BGCOLOR="#e0e0f0"
!253
, , , t
0,1,2,3,4,5,7{4,3
6}, ,
Heptipentisteriruncicantitruncated 8-cubeExigreatoterated octeract, , , , , , , , , , , , , , 23224320, , 5160960
, - align=center BGCOLOR="#e0e0f0"
!254
, , , t
0,1,2,3,4,5,6{4,3
6}, ,
Hexipentisteriruncicantitruncated 8-cubeGreat petated octeract, , , , , , , , , , , , , , 20643840, , 5160960
, - align=center BGCOLOR="#e0f0e0"
!255
, , , t
0,1,2,3,4,5,6,7{4,3
6}, ,
Omnitruncated 8-cube
In geometry, an omnitruncation is an operation applied to a regular polytope (or honeycomb) in a Wythoff construction that creates a maximum number of facets. It is represented in a Coxeter–Dynkin diagram with all nodes ringed.
It is a ''shortc ...
Great exi-octeractidiacosipentacontahexazetton, , , , , , , , , , , , , , 41287680, , 10321920
The D8 family
The D
8 family has symmetry of order 5,160,960 (8
factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times (n-1) \times (n-2) \t ...
x 2
7).
This family has 191 Wythoffian uniform polytopes, from ''3x64-1'' permutations of the D
8 Coxeter-Dynkin diagram with one or more rings. 127 (2x64-1) are repeated from the B
8 family and 64 are unique to this family, all listed below.
See
list of D8 polytopes for Coxeter plane graphs of these polytopes.
{, class="wikitable collapsible collapsed"
!colspan=15, D
8 uniform polytopes
, -
!rowspan=2, #
!rowspan=2,
Coxeter-Dynkin diagram
!rowspan=2, Name
!rowspan=2, Base point
(Alternately signed)
!colspan=8, Element counts
!rowspan=2, Circumrad
, -
!7, , 6, , 5, , 4, , 3, , 2, , 1, , 0
, - align=center
!1
, ,
= , ,
8-demicube
In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
E. L. Elte ...
h{4,3,3,3,3,3,3}, , (1,1,1,1,1,1,1,1), , 144, , 1136, , 4032, , 8288, , 10752, , 7168, , 1792, , 128, , 1.0000000
, - align=center
!2
, ,
= , ,
cantic 8-cubeh
2{4,3,3,3,3,3,3}, , (1,1,3,3,3,3,3,3), , , , , , , , , , , , , , 23296, , 3584, , 2.6457512
, - align=center
!3
, ,
= , ,
runcic 8-cubeh
3{4,3,3,3,3,3,3}, , (1,1,1,3,3,3,3,3), , , , , , , , , , , , , , 64512, , 7168, , 2.4494896
, - align=center
!4
, ,
= , ,
steric 8-cube
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
A uniform 8-polytope is one which is vertex-transitive ...
h
4{4,3,3,3,3,3,3}, , (1,1,1,1,3,3,3,3), , , , , , , , , , , , , , 98560, , 8960, , 2.2360678
, - align=center
!5
, ,
= , ,
pentic 8-cube
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
A uniform 8-polytope is one which is vertex-transitive, ...
h
5{4,3,3,3,3,3,3}, , (1,1,1,1,1,3,3,3), , , , , , , , , , , , , , 89600, , 7168, , 1.9999999
, - align=center
!6
, ,
= , ,
hexic 8-cube
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
A uniform 8-polytope is one which is vertex-transitive ...
h
6{4,3,3,3,3,3,3}, , (1,1,1,1,1,1,3,3), , , , , , , , , , , , , , 48384, , 3584, , 1.7320508
, - align=center
!7
, ,
= , ,
heptic 8-cubeh
7{4,3,3,3,3,3,3}, , (1,1,1,1,1,1,1,3), , , , , , , , , , , , , , 14336, , 1024, , 1.4142135
, - align=center
!8
, ,
= , , runcicantic 8-cube
h
2,3{4,3,3,3,3,3,3}, , (1,1,3,5,5,5,5,5), , , , , , , , , , , , , , 86016, , 21504, , 4.1231055
, - align=center
!9
, ,
= , , stericantic 8-cube
h
2,4{4,3,3,3,3,3,3}, , (1,1,3,3,5,5,5,5), , , , , , , , , , , , , , 349440, , 53760, , 3.8729835
, - align=center
!10
, ,
= , , steriruncic 8-cube
h
3,4{4,3,3,3,3,3,3}, , (1,1,1,3,5,5,5,5), , , , , , , , , , , , , , 179200, , 35840, , 3.7416575
, - align=center
!11
, ,
= , , penticantic 8-cube
h
2,5{4,3,3,3,3,3,3}, , (1,1,3,3,3,5,5,5), , , , , , , , , , , , , , 573440, , 71680, , 3.6055512
, - align=center
!12
, ,
= , , pentiruncic 8-cube
h
3,5{4,3,3,3,3,3,3}, , (1,1,1,3,3,5,5,5), , , , , , , , , , , , , , 537600, , 71680, , 3.4641016
, - align=center
!13
, ,
= , , pentisteric 8-cube
h
4,5{4,3,3,3,3,3,3}, , (1,1,1,1,3,5,5,5), , , , , , , , , , , , , , 232960, , 35840, , 3.3166249
, - align=center
!14
, ,
= , , hexicantic 8-cube
h
2,6{4,3,3,3,3,3,3}, , (1,1,3,3,3,3,5,5), , , , , , , , , , , , , , 456960, , 53760, , 3.3166249
, - align=center
!15
, ,
= , , hexicruncic 8-cube
h
3,6{4,3,3,3,3,3,3}, , (1,1,1,3,3,3,5,5), , , , , , , , , , , , , , 645120, , 71680, , 3.1622777
, - align=center
!16
, ,
= , , hexisteric 8-cube
h
4,6{4,3,3,3,3,3,3}, , (1,1,1,1,3,3,5,5), , , , , , , , , , , , , , 483840, , 53760, , 3
, - align=center
!17
, ,
= , , hexipentic 8-cube
h
5,6{4,3,3,3,3,3,3}, , (1,1,1,1,1,3,5,5), , , , , , , , , , , , , , 182784, , 21504, , 2.8284271
, - align=center
!18
, ,
= , , hepticantic 8-cube
h
2,7{4,3,3,3,3,3,3}, , (1,1,3,3,3,3,3,5), , , , , , , , , , , , , , 172032, , 21504, , 3
, - align=center
!19
, ,
= , , heptiruncic 8-cube
h
3,7{4,3,3,3,3,3,3}, , (1,1,1,3,3,3,3,5), , , , , , , , , , , , , , 340480, , 35840, , 2.8284271
, - align=center
!20
, ,
= , , heptsteric 8-cube
h
4,7{4,3,3,3,3,3,3}, , (1,1,1,1,3,3,3,5), , , , , , , , , , , , , , 376320, , 35840, , 2.6457512
, - align=center
!21
, ,
= , , heptipentic 8-cube
h
5,7{4,3,3,3,3,3,3}, , (1,1,1,1,1,3,3,5), , , , , , , , , , , , , , 236544, , 21504, , 2.4494898
, - align=center
!22
, ,
= , , heptihexic 8-cube
h
6,7{4,3,3,3,3,3,3}, , (1,1,1,1,1,1,3,5), , , , , , , , , , , , , , 78848, , 7168, , 2.236068
, - align=center
!23
, ,
= , , steriruncicantic 8-cube
h
2,3,4{4,3
6}, , (1,1,3,5,7,7,7,7), , , , , , , , , , , , , , 430080, , 107520, , 5.3851647
, - align=center
!24
, ,
= , , pentiruncicantic 8-cube
h
2,3,5{4,3
6}, , (1,1,3,5,5,7,7,7), , , , , , , , , , , , , , 1182720, , 215040, , 5.0990195
, - align=center
!25
, ,
= , , pentistericantic 8-cube
h
2,4,5{4,3
6}, , (1,1,3,3,5,7,7,7), , , , , , , , , , , , , , 1075200, , 215040, , 4.8989797
, - align=center
!26
, ,
= , , pentisterirunic 8-cube
h
3,4,5{4,3
6}, , (1,1,1,3,5,7,7,7), , , , , , , , , , , , , , 716800, , 143360, , 4.7958317
, - align=center
!27
, ,
= , , hexiruncicantic 8-cube
h
2,3,6{4,3
6}, , (1,1,3,5,5,5,7,7), , , , , , , , , , , , , , 1290240, , 215040, , 4.7958317
, - align=center
!28
, ,
= , , hexistericantic 8-cube
h
2,4,6{4,3
6}, , (1,1,3,3,5,5,7,7), , , , , , , , , , , , , , 2096640, , 322560, , 4.5825758
, - align=center
!29
, ,
= , , hexisterirunic 8-cube
h
3,4,6{4,3
6}, , (1,1,1,3,5,5,7,7), , , , , , , , , , , , , , 1290240, , 215040, , 4.472136
, - align=center
!30
, ,
= , , hexipenticantic 8-cube
h
2,5,6{4,3
6}, , (1,1,3,3,3,5,7,7), , , , , , , , , , , , , , 1290240, , 215040, , 4.3588991
, - align=center
!31
, ,
= , , hexipentirunic 8-cube
h
3,5,6{4,3
6}, , (1,1,1,3,3,5,7,7), , , , , , , , , , , , , , 1397760, , 215040, , 4.2426405
, - align=center
!32
, ,
= , , hexipentisteric 8-cube
h
4,5,6{4,3
6}, , (1,1,1,1,3,5,7,7), , , , , , , , , , , , , , 698880, , 107520, , 4.1231055
, - align=center
!33
, ,
= , , heptiruncicantic 8-cube
h
2,3,7{4,3
6}, , (1,1,3,5,5,5,5,7), , , , , , , , , , , , , , 591360, , 107520, , 4.472136
, - align=center
!34
, ,
= , , heptistericantic 8-cube
h
2,4,7{4,3
6}, , (1,1,3,3,5,5,5,7), , , , , , , , , , , , , , 1505280, , 215040, , 4.2426405
, - align=center
!35
, ,
= , , heptisterruncic 8-cube
h
3,4,7{4,3
6}, , (1,1,1,3,5,5,5,7), , , , , , , , , , , , , , 860160, , 143360, , 4.1231055
, - align=center
!36
, ,
= , , heptipenticantic 8-cube
h
2,5,7{4,3
6}, , (1,1,3,3,3,5,5,7), , , , , , , , , , , , , , 1612800, , 215040, , 4
, - align=center
!37
, ,
= , , heptipentiruncic 8-cube
h
3,5,7{4,3
6}, , (1,1,1,3,3,5,5,7), , , , , , , , , , , , , , 1612800, , 215040, , 3.8729835
, - align=center
!38
, ,
= , , heptipentisteric 8-cube
h
4,5,7{4,3
6}, , (1,1,1,1,3,5,5,7), , , , , , , , , , , , , , 752640, , 107520, , 3.7416575
, - align=center
!39
, ,
= , , heptihexicantic 8-cube
h
2,6,7{4,3
6}, , (1,1,3,3,3,3,5,7), , , , , , , , , , , , , , 752640, , 107520, , 3.7416575
, - align=center
!40
, ,
= , , heptihexiruncic 8-cube
h
3,6,7{4,3
6}, , (1,1,1,3,3,3,5,7), , , , , , , , , , , , , , 1146880, , 143360, , 3.6055512
, - align=center
!41
, ,
= , , heptihexisteric 8-cube
h
4,6,7{4,3
6}, , (1,1,1,1,3,3,5,7), , , , , , , , , , , , , , 913920, , 107520, , 3.4641016
, - align=center
!42
, ,
= , , heptihexipentic 8-cube
h
5,6,7{4,3
6}, , (1,1,1,1,1,3,5,7), , , , , , , , , , , , , , 365568, , 43008, , 3.3166249
, - align=center
!43
, ,
= , ,
pentisteriruncicantic 8-cubeh
2,3,4,5{4,3
6}, , (1,1,3,5,7,9,9,9), , , , , , , , , , , , , , 1720320, , 430080, , 6.4031243
, - align=center
!44
, ,
= , ,
hexisteriruncicantic 8-cubeh
2,3,4,6{4,3
6}, , (1,1,3,5,7,7,9,9), , , , , , , , , , , , , , 3225600, , 645120, , 6.0827627
, - align=center
!45
, ,
= , ,
hexipentiruncicantic 8-cubeh
2,3,5,6{4,3
6}, , (1,1,3,5,5,7,9,9), , , , , , , , , , , , , , 2903040, , 645120, , 5.8309517
, - align=center
!46
, ,
= , ,
hexipentistericantic 8-cubeh
2,4,5,6{4,3
6}, , (1,1,3,3,5,7,9,9), , , , , , , , , , , , , , 3225600, , 645120, , 5.6568542
, - align=center
!47
, ,
= , ,
hexipentisteriruncic 8-cubeh
3,4,5,6{4,3
6}, , (1,1,1,3,5,7,9,9), , , , , , , , , , , , , , 2150400, , 430080, , 5.5677648
, - align=center
!48
, ,
= , ,
heptsteriruncicantic 8-cubeh
2,3,4,7{4,3
6}, , (1,1,3,5,7,7,7,9), , , , , , , , , , , , , , 2150400, , 430080, , 5.7445626
, - align=center
!49
, ,
= , ,
heptipentiruncicantic 8-cubeh
2,3,5,7{4,3
6}, , (1,1,3,5,5,7,7,9), , , , , , , , , , , , , , 3548160, , 645120, , 5.4772258
, - align=center
!50
, ,
= , ,
heptipentistericantic 8-cubeh
2,4,5,7{4,3
6}, , (1,1,3,3,5,7,7,9), , , , , , , , , , , , , , 3548160, , 645120, , 5.291503
, - align=center
!51
, ,
= , ,
heptipentisteriruncic 8-cubeh
3,4,5,7{4,3
6}, , (1,1,1,3,5,7,7,9), , , , , , , , , , , , , , 2365440, , 430080, , 5.1961527
, - align=center
!52
, ,
= , ,
heptihexiruncicantic 8-cubeh
2,3,6,7{4,3
6}, , (1,1,3,5,5,5,7,9), , , , , , , , , , , , , , 2150400, , 430080, , 5.1961527
, - align=center
!53
, ,
= , ,
heptihexistericantic 8-cubeh
2,4,6,7{4,3
6}, , (1,1,3,3,5,5,7,9), , , , , , , , , , , , , , 3870720, , 645120, , 5
, - align=center
!54
, ,
= , ,
heptihexisteriruncic 8-cubeh
3,4,6,7{4,3
6}, , (1,1,1,3,5,5,7,9), , , , , , , , , , , , , , 2365440, , 430080, , 4.8989797
, - align=center
!55
, ,
= , ,
heptihexipenticantic 8-cubeh
2,5,6,7{4,3
6}, , (1,1,3,3,3,5,7,9), , , , , , , , , , , , , , 2580480, , 430080, , 4.7958317
, - align=center
!56
, ,
= , ,
heptihexipentiruncic 8-cubeh
3,5,6,7{4,3
6}, , (1,1,1,3,3,5,7,9), , , , , , , , , , , , , , 2795520, , 430080, , 4.6904159
, - align=center
!57
, ,
= , ,
heptihexipentisteric 8-cubeh
4,5,6,7{4,3
6}, , (1,1,1,1,3,5,7,9), , , , , , , , , , , , , , 1397760, , 215040, , 4.5825758
, - align=center
!58
, ,
= , ,
hexipentisteriruncicantic 8-cubeh
2,3,4,5,6{4,3
6}, , (1,1,3,5,7,9,11,11), , , , , , , , , , , , , , 5160960, , 1290240, , 7.1414285
, - align=center
!59
, ,
= , ,
heptipentisteriruncicantic 8-cubeh
2,3,4,5,7{4,3
6}, , (1,1,3,5,7,9,9,11), , , , , , , , , , , , , , 5806080, , 1290240, , 6.78233
, - align=center
!60
, ,
= , ,
heptihexisteriruncicantic 8-cubeh
2,3,4,6,7{4,3
6}, , (1,1,3,5,7,7,9,11), , , , , , , , , , , , , , 5806080, , 1290240, , 6.480741
, - align=center
!61
, ,
= , ,
heptihexipentiruncicantic 8-cubeh
2,3,5,6,7{4,3
6}, , (1,1,3,5,5,7,9,11), , , , , , , , , , , , , , 5806080, , 1290240, , 6.244998
, - align=center
!62
, ,
= , ,
heptihexipentistericantic 8-cubeh
2,4,5,6,7{4,3
6}, , (1,1,3,3,5,7,9,11), , , , , , , , , , , , , , 6451200, , 1290240, , 6.0827627
, - align=center
!63
, ,
= , ,
heptihexipentisteriruncic 8-cubeh
3,4,5,6,7{4,3
6}, , (1,1,1,3,5,7,9,11), , , , , , , , , , , , , , 4300800, , 860160, , 6.0000000
, - align=center
!64
, ,
= , ,
heptihexipentisteriruncicantic 8-cubeh
2,3,4,5,6,7{4,3
6}, , (1,1,3,5,7,9,11,13), , , , , , , , , , , , , , 2580480, , 10321920, , 7.5498347
The E8 family
The E
8 family has symmetry order 696,729,600.
There are 255 forms based on all permutations of the
Coxeter-Dynkin diagrams with one or more rings. Eight forms are shown below, 4 single-ringed, 3 truncations (2 rings), and the final omnitruncation are given below. Bowers-style acronym names are given for cross-referencing.
See also
list of E8 polytopes
In 8-dimensional geometry, there are 255 uniform polytopes with E8 symmetry. The three simplest forms are the 421, 241, and 142 polytopes, composed of 240, 2160 and 17280 vertices respectively.
These polytopes can be visualized as symmetric ...
for Coxeter plane graphs of this family.
{, class="wikitable collapsible collapsed"
!colspan=15, E
8 uniform polytopes
, -
!rowspan=2, #
!rowspan=2,
Coxeter-Dynkin diagram
!rowspan=2, Names
!colspan=8, Element counts
, -
! 7-faces
! 6-faces
! 5-faces
! 4-faces
! Cells
! Faces
! Edges
! Vertices
, - align=center
, 1, , , ,
421 (fy)
, 19440, , 207360, , 483840, , 483840, , 241920, , 60480, , 6720, , 240
, - align=center
, 2, , , ,
Truncated 421 (tiffy)
, , , , , , , , , , , , , 188160, , 13440
, - align=center
, 3, , , ,
Rectified 421 (riffy)
, 19680, , 375840, , 1935360, , 3386880, , 2661120, , 1028160, , 181440, , 6720
, - align=center
, 4, , , ,
Birectified 421 (borfy)
, 19680, , 382560, , 2600640, , 7741440, , 9918720, , 5806080, , 1451520, , 60480
, - align=center
, 5, , , ,
Trirectified 421 (torfy)
, 19680, , 382560, , 2661120, , 9313920, , 16934400, , 14515200, , 4838400, , 241920
, - align=center
, 6, , , ,
Rectified 142 (buffy)
, 19680, , 382560, , 2661120, , 9072000, , 16934400, , 16934400, , 7257600, , 483840
, - align=center
, 7, , , ,
Rectified 241 (robay)
, 19680, , 313440, , 1693440, , 4717440, , 7257600, , 5322240, , 1451520, , 69120
, - align=center
, 8, , , ,
241 (bay)
, 17520, , 144960, , 544320, , 1209600, , 1209600, , 483840, , 69120, , 2160
, - align=center
, 9, , , ,
Truncated 241
, , , , , , , , , , , , , , , 138240
, - align=center
, 10, , , ,
142 (bif)
, 2400, , 106080, , 725760, , 2298240, , 3628800, , 2419200, , 483840, , 17280
, - align=center
, 11, , , ,
Truncated 142
, , , , , , , , , , , , , , , 967680
, - align=center
, 12, , , ,
Omnitruncated 421
, , , , , , , , , , , , , , , 696729600
Regular and uniform honeycombs
There are five fundamental affine
Coxeter groups
In mathematics, a Coxeter group, named after Harold Scott MacDonald Coxeter, H. S. M. Coxeter, is an group (mathematics), abstract group that admits a group presentation, formal description in terms of Reflection (mathematics), reflections (or Kal ...
that generate regular and uniform tessellations in 7-space:
{, class="wikitable"
, -
!#
!colspan=2,
Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refl ...
!
Coxeter diagram
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
!Forms
, - align=center
, 1, ,
, ,
[8/sup>">.html" ;"title="
[8">[8/sup>">">, 29
, - align=center
, 2, , , , 5,4">, , 135
, - align=center
, 3, , , , [4,34,31,1, , , 191 (64 new)
, - align=center
, 4, , , , 1,1,3
3,3
1,1">, , 77 (10 new)
, - align=center
, 5, ,
, ,
3,3,1">, , 143
Regular and uniform tessellations include:
*
29 uniquely ringed forms, including:
**
: {3[8">7-simplex honeycomb: {3
[8/sup>}
* 135 uniquely ringed forms, including:
** Regular 7-cube honeycomb">.html" ;"title="7-simplex honeycomb: {3[8">7-simplex honeycomb: {3[8/sup>}
* 135 uniquely ringed forms, including:
** Regular 7-cube honeycomb: {4,34,4} = {4,34,31,1}, =
* 191 uniquely ringed forms, 127 shared with , and 64 new, including:
** 7-demicube honeycomb: h{4,34,4} = {31,1,34,4}, =
* , [31,1,33,31,1]: 77 unique ring permutations, and 10 are new, the first Coxeter called a quarter 7-cubic honeycomb
In Seven-dimensional space, seven-dimensional Euclidean geometry, the quarter 7-cubic honeycomb is a uniform space-filling tessellation (or honeycomb (geometry), honeycomb). It has half the vertices of the 7-demicubic honeycomb, and a quarter of th ...
.
** , , , , , , , , ,
* 143 uniquely ringed forms, including:
** 133 honeycomb: {3,33,3},
** 331 honeycomb: {3,3,3,33,1},
Regular and uniform hyperbolic honeycombs
There are no compact hyperbolic Coxeter groups of rank 8, groups that can generate honeycombs with all finite facets, and a finite vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
. However, there are 4 paracompact hyperbolic Coxeter groups of rank 8, each generating uniform honeycombs in 7-space as permutations of rings of the Coxeter diagrams.
{, class=wikitable
, align= = [7">,3 /sup>">.html" ;"title=",3[7">,3[7/sup>
">align=right"> = 1,1,32,32,1
">align= = 3,32,1
">align= = 3,2,2
References
*
T. Gosset: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'',
, Macmillan, 1900
* Alicia Boole Stott">A. Boole Stott: ''Geometrical deduction of semiregular from regular polytopes and space fillings'', Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
* Harold Scott MacDonald Coxeter">H.S.M. Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington t ...
:
** H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: ''Uniform Polyhedra'', Philosophical Transactions of the Royal Society of London, Londne, 1954
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
* Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380–407, MR 2,10]
** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591]
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
*
Norman Johnson (mathematician), N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
*
External links
Polytope names
{{DEFAULTSORT:8-Polytope
8-polytopes