8-demicube Honeycomb
   HOME

TheInfoList



OR:

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling
tessellation A tessellation or tiling is the covering of a surface, often a plane (mathematics), plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to high-dimensional ...
(or
honeycomb A honeycomb is a mass of Triangular prismatic honeycomb#Hexagonal prismatic honeycomb, hexagonal prismatic Beeswax, wax cells built by honey bees in their beehive, nests to contain their larvae and stores of honey and pollen. beekeeping, Beekee ...
) in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb. It is composed of two different types of
facet Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cut ...
s. The
8-cube In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schl ...
s become alternated into
8-demicube In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte ...
s h and the alternated vertices create
8-orthoplex In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''. It has two const ...
facets .


D8 lattice

The
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equ ...
of the 8-demicubic honeycomb is the D8 lattice. The 112 vertices of the
rectified 8-orthoplex In eight-dimensional geometry, a rectified 8-orthoplex is a convex uniform 8-polytope, being a rectification of the regular 8-orthoplex. There are unique 8 degrees of rectifications, the zeroth being the 8-orthoplex, and the 7th and last being th ...
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
of the ''8-demicubic honeycomb'' reflect the
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement of ...
112 of this lattice. The best known is 240, from the E8 lattice and the 521 honeycomb. _8 contains _8 as a subgroup of index 270. Both _8 and _8 can be seen as affine extensions of D_8 from different nodes: The D lattice (also called D) can be constructed by the union of two D8 lattices. This packing is only a lattice for even dimensions. The kissing number is 240. (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8). It is identical to the
E8 lattice In mathematics, the E lattice is a special lattice in R. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E root system. The normIn th ...
. At 8-dimensions, the 240 contacts contain both the 27=128 from lower dimension contact progression (2n-1), and 16*7=112 from higher dimensions (2n(n-1)). : ∪ = . The D lattice (also called D and C) can be constructed by the union of all four ''D8 lattices'': It is also the 7-dimensional
body centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties o ...
, the union of two
7-cube honeycomb The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 7-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. There are many different W ...
s in dual positions. : ∪ ∪ ∪ = ∪ . The
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement of ...
of the D lattice is 16 (''2n'' for n≥5). and its
Voronoi tessellation Voronoi or Voronoy is a Slavic masculine surname; its feminine counterpart is Voronaya. It may refer to *Georgy Voronoy (1868–1908), Russian and Ukrainian mathematician **Voronoi diagram **Weighted Voronoi diagram ** Voronoi deformation density ** ...
is a
quadrirectified 8-cubic honeycomb The 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation (or honeycomb (geometry), honeycomb) in Euclidean space, Euclidean 8-space. It is analogous to the square tiling of the plane and to the cubic honeycomb o ...
, , containing all trirectified 8-orthoplex
Voronoi cell In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed t ...
, .Conway (1998), p. 466


Symmetry constructions

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 256
8-demicube In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte ...
facets around each vertex.


See also

* 8-cubic honeycomb *
Uniform polytope In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vert ...


Notes


References

* Coxeter, H.S.M. ''
Regular Polytopes In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, f ...
'', (3rd edition, 1973), Dover edition, ** pp. 154–156: Partial truncation or alternation, represented by ''h'' prefix: h=; h=, h=, ... * Kaleidoscopes: Selected Writings of
H. S. M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
, edited by F. Arthur Sherk,
Peter McMullen Peter McMullen (born 11 May 1942) is a British mathematician, a professor emeritus of mathematics at University College London. Education and career McMullen earned bachelor's and master's degrees from Trinity College, Cambridge, and studied at ...
, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* N.W. Johnson: ''Geometries and Transformations'', (2018) *


External links

{{Honeycombs Honeycombs (geometry) 9-polytopes