In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the 5-cell is the convex
4-polytope with
Schläfli symbol . It is a 5-vertex
four-dimensional
A four-dimensional space (4D) is a mathematical extension of the concept of three-dimensional or 3D space. Three-dimensional space is the simplest possible abstraction of the observation that one only needs three numbers, called ''dimensions'', ...
object bounded by five tetrahedral cells. It is also known as a C
5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is the 4-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
(Coxeter's
polytope), the simplest possible convex 4-polytope, and is analogous to the
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
in three dimensions and the
triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, an ...
in two dimensions. The 5-cell is a
4-dimensional pyramid with a tetrahedral base and four tetrahedral sides.
The regular 5-cell is bounded by five
regular tetrahedra, and is one of the six
regular convex 4-polytope
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.
There are six convex and ten star reg ...
s (the four-dimensional analogues of the
Platonic solids
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges c ...
). A regular 5-cell can be constructed from a regular tetrahedron by adding a fifth vertex one edge length distant from all the vertices of the tetrahedron. This cannot be done in 3-dimensional space. The regular 5-cell is a solution to the problem: ''Make 10 equilateral triangles, all of the same size, using 10 matchsticks, where each side of every triangle is exactly one matchstick, and none of the triangles and match sticks intersect one another.'' No solution exists in three dimensions.
Alternative names
* Pentachoron (5-point 4-polytope)
* Hypertetrahedron (4-dimensional analogue of the
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
)
* 4-simplex (4-dimensional
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
)
* Tetrahedral pyramid (4-dimensional
hyperpyramid
A hyperpyramid is a generalisation of the normal pyramid to ''n'' dimensions.
In the case of the pyramid one connects all vertices of the base, a polygon in a plane, to a point outside the plane, which is the peak. The pyramid's height is the di ...
with a tetrahedral base)
* Pentatope
* Pentahedroid (Henry Parker Manning)
* Pen (Jonathan Bowers: for pentachoron)
Category 1: Regular Polychora
/ref>
Geometry
The 5-cell is the 4-dimensional simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
, the simplest possible 4-polytope. As such it is the first in the sequence of 6 convex regular 4-polytopes (in order of size and complexity).
A 5-cell is formed by any five points which are not all in the same hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyper ...
(as a tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
is formed by any four points which are not all in the same plane, and a triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, an ...
is formed by any three points which are not all in the same line). Therefore any arbitrarily chosen five vertices of ''any'' 4-polytope constitute a 5-cell, though not usually a regular 5-cell. The ''regular'' 5-cell is not found within any of the other regular convex 4-polytopes except one: the 600-vertex 120-cell
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, heca ...
is a compound
Compound may refer to:
Architecture and built environments
* Compound (enclosure), a cluster of buildings having a shared purpose, usually inside a fence or wall
** Compound (fortification), a version of the above fortified with defensive struc ...
of 120 regular 5-cells.
Structure
When a net of five tetrahedra is folded up in 4-dimensional space such that each tetrahedron is face bonded to the other four, the resulting 5-cell has a total of 5 vertices, 10 edges and 10 faces. Four edges meet at each vertex, and three tetrahedral cells meet at each edge.
The 5-cell is self-dual
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a Injective function, one-to-one fashion, often (but not always) by means of an Involution (mathematics), involutio ...
(as are all simplexes), and its vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
is the tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
. Its maximal intersection with 3-dimensional space is the triangular prism
In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A ...
. Its dihedral angle
A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the uni ...
is cos−1(), or approximately 75.52°.
The convex hull of two 5-cells in dual configuration is the disphenoidal 30-cell, dual of the bitruncated 5-cell
In geometry, a truncated 5-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 5-cell.
There are two degrees of truncations, including a bitruncation.
Truncated 5-cell
The truncated 5-cell, tr ...
.
As a configuration
This configuration matrix represents the 5-cell. The rows and columns correspond to vertices, edges, faces, and cells. The diagonal numbers say how many of each element occur in the whole 5-cell. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual polytope's matrix is identical to its 180 degree rotation.
Coordinates
The simplest set of coordinates is: (2,0,0,0), (0,2,0,0), (0,0,2,0), (0,0,0,2), (φ,φ,φ,φ), with edge length 2, where φ is the golden ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0,
where the Greek letter phi ( ...
.
The Cartesian coordinates of the vertices of an origin-centered regular 5-cell having edge length 2 and radius are:
:
:
:
:
Another set of origin-centered coordinates in 4-space can be seen as a hyperpyramid with a regular tetrahedral base in 3-space, with edge length 2 and radius :
:
:
:
:
:
The vertices of a 4-simplex (with edge and radius 1) can be more simply constructed on a hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyper ...
in 5-space, as (distinct) permutations of (0,0,0,0,1) ''or'' (0,1,1,1,1); in these positions it is a facet
Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cut ...
of, respectively, the 5-orthoplex or the rectified penteract.
Boerdijk–Coxeter helix
A 5-cell can be constructed as a Boerdijk–Coxeter helix
The Boerdijk–Coxeter helix, named after H. S. M. Coxeter and A. H. Boerdijk, is a linear stacking of regular tetrahedra, arranged so that the edges of the complex that belong to only one tetrahedron form three intertwined helices. There are ...
of five chained tetrahedra, folded into a 4-dimensional ring. The 10 triangle faces can be seen in a 2D net within a triangular tiling
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilate ...
, with 6 triangles around every vertex, although folding into 4-dimensions causes edges to coincide. The purple edges represent the Petrie polygon
In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a reg ...
of the 5-cell.
:
Projections
The A4 Coxeter plane projects the 5-cell into a regular pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.
A pentagon may be simpl ...
and pentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle arou ...
. The A3 Coxeter plane projection of the 5-cell is that of a square pyramid. The A2 Coxeter plane projection of the regular 5-cell is that of a triangular bipyramid
In geometry, the triangular bipyramid (or dipyramid) is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.
As the name suggests, i ...
(two tetrahedra joined face-to-face) with the two opposite vertices centered.
Irregular 5-cells
In the case of simplexes such as the 5-cell, certain irregular forms are in some sense more fundamental than the regular form. Although regular 5-cells cannot fill 4-space or the regular 4-polytopes, there are irregular 5-cells which do. These characteristic 5-cells are the fundamental domains of the different symmetry groups which give rise to the various 4-polytopes.
Orthoschemes
A 4-orthoscheme is a 5-cell where all 10 faces are right triangles. An orthoscheme is an irregular simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
that is the convex hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of a tree
In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are ...
in which all edges are mutually perpendicular. In a 4-dimensional orthoscheme, the tree consists of four perpendicular edges connecting all five vertices in a linear path that makes three right-angled turns. The elements of an orthoscheme are also orthoschemes (just as the elements of a regular simplex are also regular simplexes). Each tetrahedral cell of a 4-orthoscheme is a 3-orthoscheme, and each triangular face is a 2-orthoscheme (a right triangle).
Orthoschemes are the characteristic simplexes of the regular polytopes, because each regular polytope is generated by reflections in the bounding facets of its particular characteristic orthoscheme. For example, the special case of the 4-orthoscheme with equal-length perpendicular edges is the characteristic orthoscheme of the 4-cube (also called the ''tesseract'' or ''8-cell''), the 4-dimensional analogue of the 3-dimensional cube. If the three perpendicular edges of the 4-orthoscheme are of unit length, then all its edges are of length , , , or , precisely the chord lengths of the unit 4-cube (the lengths of the 4-cube's edges and its various diagonals). Therefore this 4-orthoscheme fits within the 4-cube, and the 4-cube (like every regular convex polytope) can be dissected into instances of its characteristic orthoscheme.
A 3-orthoscheme is easily illustrated, but a 4-orthoscheme is more difficult to visualize. A 4-orthoscheme is a tetrahedral pyramid with a 3-orthoscheme as its base. It has four more edges than the 3-orthoscheme, joining the four vertices of the base to its apex (the fifth vertex of the 5-cell). Pick out any one of the 3-orthoschemes of the six shown in the 3-cube illustration. Notice that it touches four of the cube's eight vertices, and those four vertices are linked by a 3-edge path that makes two right-angled turns. Imagine that this 3-orthoscheme is the base of a 4-orthoscheme, so that from each of those four vertices, an unseen 4-orthoscheme edge connects to a fifth apex vertex (which is outside the 3-cube and does not appear in the illustration at all). Although the four additional edges all reach the same apex vertex, they will all be of different lengths. The first of them, at one end of the 3-edge orthogonal path, extends that path with a fourth orthogonal edge by making a third 90 degree turn and reaching perpendicularly into the fourth dimension to the apex. The second of the four additional edges is a diagonal of a cube face (not of the illustrated 3-cube, but of another of the tesseract's eight 3-cubes). The third additional edge is a diagonal of a 3-cube (again, not the original illustrated 3-cube). The fourth additional edge (at the other end of the orthogonal path) is a long diameter of the tesseract itself, of length . It reaches through the exact center of the tesseract to the antipodal vertex (a vertex of the opposing 3-cube), which is the apex. Thus the characteristic 5-cell of the 4-cube has four edges, three edges, two edges, and one edge.
The 4-cube can be dissected into 24 such 4-orthoschemes eight different ways, with six 4-orthoschemes surrounding each of four orthogonal tesseract long diameters. The 4-cube can also be dissected into 384 ''smaller'' instances of this same characteristic 4-orthoscheme, just one way, by all of its symmetry hyperplanes at once, which divide it into 384 4-orthoschemes that all meet at the center of the 4-cube.
More generally, any regular polytope can be dissected into ''g'' instances of its characteristic orthoscheme that all meet at the regular polytope's center. The number ''g'' is the ''order'' of the polytope, the number of reflected instances of its characteristic orthoscheme that comprise the polytope when a ''single'' mirror-surfaced orthoscheme instance is reflected in its own facets. More generally still, characteristic simplexes are able to fill uniform polytopes because they possess all the requisite elements of the polytope. They also possess all the requisite angles between elements (from 90 degrees on down). The characteristic simplexes are the genetic code
The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
s of polytopes: like a Swiss Army knife, they contain one of everything needed to construct the polytope by replication.
Every regular polytope, including the regular 5-cell, has its characteristic orthoscheme. There is a 4-orthoscheme which is the characteristic 5-cell of the regular 5-cell. It is a tetrahedral pyramid based on the characteristic tetrahedron of the regular tetrahedron. The regular 5-cell can be dissected into 120 instances of this characteristic 4-orthoscheme just one way, by all of its symmetry hyperplanes at once, which divide it into 120 4-orthoschemes that all meet at the center of the regular 5-cell.
The characteristic 5-cell (4-orthoscheme) of the regular 5-cell has four more edges than its base characteristic tetrahedron (3-orthoscheme), which join the four vertices of the base to its apex (the fifth vertex of the 4-orthoscheme, at the center of the regular 5-cell). If the regular 5-cell has unit radius and edge length 𝒍 = , its characteristic 5-cell's ten edges have lengths , , (the exterior right triangle face, the ''characteristic triangle'' 𝟀, 𝝓, 𝟁), plus , , (the other three edges of the exterior 3-orthoscheme facet the characteristic tetrahedron, which are the ''characteristic radii'' of the regular tetrahedron), plus , , , (edges which are the characteristic radii of the regular 5-cell). The 4-edge path along orthogonal edges of the orthoscheme is , , , , first from a regular 5-cell vertex to a regular 5-cell edge center, then turning 90° to a regular 5-cell face center, then turning 90° to a regular 5-cell tetrahedral cell center, then turning 90° to the regular 5-cell center.
Isometries
There are many lower symmetry forms of the 5-cell, including these found as uniform polytope vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
s:
The tetrahedral pyramid is a special case of a 5-cell, a polyhedral pyramid
In geometry, a pyramid () is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a ''lateral face''. It is a conic solid with polygonal base. A pyramid with an base ...
, constructed as a regular tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
base in a 3-space hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyper ...
, and an apex
The apex is the highest point of something. The word may also refer to:
Arts and media Fictional entities
* Apex (comics), a teenaged super villainess in the Marvel Universe
* Ape-X, a super-intelligent ape in the Squadron Supreme universe
*Apex, ...
point ''above'' the hyperplane. The four ''sides'' of the pyramid are made of tetrahedron cells.
Many uniform 5-polytope
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope Facet (geometry), facets.
The complete set of convex uniform 5-polytopes ...
s have tetrahedral pyramid vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
s with Schläfli symbols ( )∨.
Other uniform 5-polytopes have irregular 5-cell vertex figures. The symmetry of a vertex figure of a uniform polytope
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vert ...
is represented by removing the ringed nodes of the Coxeter diagram.
Compound
The compound of two 5-cells in dual configurations can be seen in this A5 Coxeter plane
In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter.
Definitions
Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there ar ...
projection, with a red and blue 5-cell vertices and edges. This compound has 3,3,3 symmetry, order 240. The intersection of these two 5-cells is a uniform bitruncated 5-cell
In geometry, a truncated 5-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 5-cell.
There are two degrees of truncations, including a bitruncation.
Truncated 5-cell
The truncated 5-cell, tr ...
. = ∩ .
:
This compound can be seen as the 4D analogue of the 2D hexagram
, can be seen as a compound composed of an upwards (blue here) and downwards (pink) facing equilateral triangle, with their intersection as a regular hexagon (in green).
A hexagram ( Greek language, Greek) or sexagram (Latin) is a six-pointed ...
{} and the 3D compound of two tetrahedra
In geometry, a compound of two tetrahedra is constructed by two overlapping tetrahedra, usually implied as regular tetrahedra.
Stellated octahedron
There is only one uniform polyhedral compound, the stellated octahedron, which has octahedral ...
.
Related polytopes and honeycombs
The pentachoron (5-cell) is the simplest of 9 uniform polychora constructed from the ,3,3Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refl ...
.
It is in the sequence of regular polychora
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.
There are six convex and ten star regu ...
with a tetrahedral
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
: the tesseract
In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
and 120-cell
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, heca ...
of Euclidean 4-space, and the hexagonal tiling honeycomb
In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is ''paracompact'' because it has cells composed of an infinite number of faces. Each cell is a ...
of hyperbolic space.
It is one of three regular 4-polytope
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.
There are six convex and ten star regu ...
s with tetrahedral cells, along with the 16-cell and 600-cell
In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
. The order-6 tetrahedral honeycomb of hyperbolic space also has tetrahedral cells.
It is self-dual like the 24-cell , having a palindromic
A palindrome is a word, number, phrase, or other sequence of symbols that reads the same backwards as forwards, such as the words ''madam'' or ''racecar'', the date and time ''11/11/11 11:11,'' and the sentence: "A man, a plan, a canal – Pana ...
Schläfli symbol.
Notes
Citations
References
* T. Gosset: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900
* H.S.M. Coxeter:
**
*** p. 120, §7.2. see illustration Fig 7.2A
*** p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
**
** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45*
* John H. Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English people, English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to ...
, Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, (Chapter 26. pp. 409: Hemicubes: 1n1)
* Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966)
External links
*
*
Der 5-Zeller (5-cell)
Marco Möller's Regular polytopes in R4 (German)
pyrochoron
{{Authority control
005