∉
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an element (or member) of a set is any one of the distinct objects that belong to that set.


Sets

Writing A = \ means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of , for example \, are
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of . Sets can themselves be elements. For example, consider the set B = \. The elements of are ''not'' 1, 2, 3, and 4. Rather, there are only three elements of , namely the numbers 1 and 2, and the set \. The elements of a set can be anything. For example, C = \ is the set whose elements are the colors , and .


Notation and terminology

The relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing :x \in A means that "''x'' is an element of ''A''". Equivalent expressions are "''x'' is a member of ''A''", "''x'' belongs to ''A''", "''x'' is in ''A''" and "''x'' lies in ''A''". The expressions "''A'' includes ''x''" and "''A'' contains ''x''" are also used to mean set membership, although some authors use them to mean instead "''x'' is a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of ''A''". p. 12 Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only. For the relation ∈ , the converse relation ∈T may be written :A \ni x , meaning "''A'' contains or includes ''x''". The
negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
of set membership is denoted by the symbol "∉". Writing :x \notin A means that "''x'' is not an element of ''A''". The symbol ∈ was first used by Giuseppe Peano, in his 1889 work . Here he wrote on page X:
which means
The symbol ∈ means ''is''. So a ∈ b is read as a ''is a certain'' b; …
The symbol itself is a stylized lowercase Greek letter
epsilon Epsilon (, ; uppercase , lowercase or lunate ; el, έψιλον) is the fifth letter of the Greek alphabet, corresponding phonetically to a mid front unrounded vowel or . In the system of Greek numerals it also has the value five. It was der ...
("ϵ"), the first letter of the word , which means "is".


Cardinality of sets

The number of elements in a particular set is a property known as
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
; informally, this is the size of a set. In the above examples, the cardinality of the set ''A'' is 4, while the cardinality of set ''B'' and set ''C'' are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets. An example of an infinite set is the set of positive integers .


Examples

Using the sets defined above, namely ''A'' = , ''B'' = and ''C'' = , the following statements are true: *2 ∈ ''A'' *5 ∉ ''A'' * ∈ ''B'' *3 ∉ ''B'' *4 ∉ ''B'' *yellow ∉ ''C''


Formal relation

As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted ''U''. The range is the set of
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of ''U'' called the power set of ''U'' and denoted P(''U''). Thus the relation \in is a subset of ''U'' x P(''U''). The converse relation \ni is a subset of P(''U'') x ''U''.


See also

* Identity element *
Singleton (mathematics) In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the ...


References


Further reading

* - "Naive" means that it is not fully axiomatized, not that it is silly or easy (Halmos's treatment is neither). * * - Both the notion of set (a collection of members), membership or element-hood, the axiom of extension, the axiom of separation, and the union axiom (Suppes calls it the sum axiom) are needed for a more thorough understanding of "set element". {{Set theory Basic concepts in set theory