â„­
   HOME

TheInfoList



OR:

In set theory, the cardinality of the continuum is the
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
or "size" of the set of
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
\mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathbb R, . The real numbers \mathbb R are more numerous than the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
\mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a'' < ''b'', no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those contained in the whole set of real numbers. In other words, the
open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
(''a'',''b'') is equinumerous with \mathbb R. This is also true for several other infinite sets, such as any ''n''-dimensional Euclidean space \mathbb R^n (see
space filling curve In mathematical analysis, a space-filling curve is a curve whose range contains the entire 2-dimensional unit square (or more generally an ''n''-dimensional unit hypercube). Because Giuseppe Peano (1858–1932) was the first to discover one, space ...
). That is, The smallest infinite cardinal number is \aleph_0 ( aleph-null). The second smallest is \aleph_1 ( aleph-one). The continuum hypothesis, which asserts that there are no sets whose cardinality is strictly between \aleph_0 and means that \mathfrak c = \aleph_1. The truth or falsity of this hypothesis is undecidable and cannot be proven within the widely used Zermelo–Fraenkel set theory with axiom of choice (ZFC).


Properties


Uncountability

Georg Cantor introduced the concept of
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
to compare the sizes of infinite sets. He famously showed that the set of real numbers is uncountably infinite. That is, is strictly greater than the cardinality of the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
, \aleph_0: In practice, this means that there are strictly more real numbers than there are integers. Cantor proved this statement in several different ways. For more information on this topic, see Cantor's first uncountability proof and Cantor's diagonal argument.


Cardinal equalities

A variation of Cantor's diagonal argument can be used to prove Cantor's theorem, which states that the cardinality of any set is strictly less than that of its power set. That is, , A, < 2^ (and so that the power set \wp(\mathbb N) of the natural numbers \mathbb N is uncountable). In fact, one can show that the cardinality of \wp(\mathbb N) is equal to as follows: #Define a map f:\mathbb R\to\wp(\mathbb Q) from the reals to the power set of the rationals, \mathbb Q, by sending each real number x to the set \ of all rationals less than or equal to x (with the reals viewed as Dedekind cuts, this is nothing other than the inclusion map in the set of sets of rationals). Because the rationals are dense in \mathbb, this map is
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
, and because the rationals are countable, we have that \mathfrak c \le 2^. #Let \^ be the set of infinite sequences with values in set \. This set has cardinality 2^ (the natural
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
between the set of binary sequences and \wp(\mathbb N) is given by the
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\i ...
). Now, associate to each such sequence (a_i)_ the unique real number in the interval ,1/math> with the
ternary Ternary (from Latin ''ternarius'') or trinary is an adjective meaning "composed of three items". It can refer to: Mathematics and logic * Ternary numeral system, a base-3 counting system ** Balanced ternary, a positional numeral system, usef ...
-expansion given by the digits a_1,a_2,\dotsc, i.e., \sum_^\infty a_i3^, the i-th digit after the fractional point is a_i with respect to base 3. The image of this map is called the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
. It is not hard to see that this map is injective, for by avoiding points with the digit 1 in their ternary expansion, we avoid conflicts created by the fact that the ternary-expansion of a real number is not unique. We then have that 2^ \le \mathfrak c. By the Cantor–Bernstein–Schroeder theorem we conclude that The cardinal equality \mathfrak^2 = \mathfrak can be demonstrated using cardinal arithmetic: By using the rules of cardinal arithmetic, one can also show that where ''n'' is any finite cardinal ≥ 2, and where 2 ^ is the cardinality of the power set of R, and 2 ^ > \mathfrak c .


Alternative explanation for 𝔠 = 20

Every real number has at least one infinite decimal expansion. For example, (This is true even in the case the expansion repeats, as in the first two examples.) In any given case, the number of digits is countable since they can be put into a one-to-one correspondence with the set of natural numbers \mathbb. This makes it sensible to talk about, say, the first, the one-hundredth, or the millionth digit of π. Since the natural numbers have cardinality \aleph_0, each real number has \aleph_0 digits in its expansion. Since each real number can be broken into an integer part and a decimal fraction, we get: where we used the fact that On the other hand, if we map 2 = \ to \ and consider that decimal fractions containing only 3 or 7 are only a part of the real numbers, then we get and thus


Beth numbers

The sequence of beth numbers is defined by setting \beth_0 = \aleph_0 and \beth_ = 2^. So is the second beth number, beth-one: The third beth number, beth-two, is the cardinality of the power set of \mathbb (i.e. the set of all subsets of the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
):


The continuum hypothesis

The famous continuum hypothesis asserts that is also the second aleph number, \aleph_1. In other words, the continuum hypothesis states that there is no set A whose cardinality lies strictly between \aleph_0 and This statement is now known to be independent of the axioms of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), as shown by
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 â€“ January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
and Paul Cohen. That is, both the hypothesis and its negation are consistent with these axioms. In fact, for every nonzero natural number ''n'', the equality = \aleph_n is independent of ZFC (case n=1 being the continuum hypothesis). The same is true for most other alephs, although in some cases, equality can be ruled out by König's theorem on the grounds of cofinality (e.g., \mathfrak\neq\aleph_\omega). In particular, \mathfrak could be either \aleph_1 or \aleph_, where \omega_1 is the
first uncountable ordinal In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. Whe ...
, so it could be either a
successor cardinal In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case th ...
or a limit cardinal, and either a regular cardinal or a singular cardinal.


Sets with cardinality of the continuum

A great many sets studied in mathematics have cardinality equal to . Some common examples are the following:


Sets with greater cardinality

Sets with cardinality greater than include: *the set of all subsets of \mathbb (i.e., power set \mathcal(\mathbb)) *the set 2R of
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\i ...
s defined on subsets of the reals (the set 2^ is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to \mathcal(\mathbb) â€“ the indicator function chooses elements of each subset to include) *the set \mathbb^\mathbb of all functions from \mathbb to \mathbb *the Lebesgue σ-algebra of \mathbb, i.e., the set of all Lebesgue measurable sets in \mathbb. *the set of all
Lebesgue-integrable In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the -axis. The Lebesgue integral, named after French mathematician Henri Leb ...
functions from \mathbb to \mathbb *the set of all Lebesgue-measurable functions from \mathbb to \mathbb *the Stone–Čech compactifications of \mathbb, \mathbb and \mathbb *the set of all automorphisms of the (discrete) field of complex numbers. These all have cardinality 2^\mathfrak c = \beth_2 ( beth two).


References


Bibliography

* Paul Halmos, ''Naive set theory''. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. (Springer-Verlag edition). * Jech, Thomas, 2003. ''Set Theory: The Third Millennium Edition, Revised and Expanded''. Springer. . * Kunen, Kenneth, 1980. '' Set Theory: An Introduction to Independence Proofs''. Elsevier. . {{PlanetMath attribution, urlname=CardinalityOfTheContinuum, title=cardinality of the continuum Cardinal numbers Set theory Infinity