Θ10
   HOME

TheInfoList



OR:

In
representation theory Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
, a branch of mathematics, θ10 is a cuspidal unipotent complex irreducible representation of the
symplectic group In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic gr ...
Sp4 over a finite,
local Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States Arts, entertainment, and media * ''Local'' (comics), a limited series comic book by Bria ...
, or global field. introduced θ10 for the
symplectic group In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic gr ...
Sp4(F''q'') over a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
F''q'' of order ''q'', and showed that in this case it is ''q''(''q'' â€“ 1)2/2-dimensional. The subscript 10 in θ10 is a historical accident that has stuck: Srinivasan arbitrarily named some of the characters of Sp4(F''q'') as θ1, θ2, ..., θ13, and the tenth one in her list happens to be the cuspidal unipotent character. θ10 is the only cuspidal unipotent representation of Sp4(F''q''). It is the simplest example of a cuspidal unipotent representation of a reductive group, and also the simplest example of a degenerate cuspidal representation (one without a Whittaker model). General linear groups have no cuspidal unipotent representations and no degenerate cuspidal representations, so θ10 exhibits properties of general reductive groups that do not occur for general linear groups. used the representations θ10 over local and global fields in their construction of counterexamples to the generalized Ramanujan conjecture for the symplectic group. described the representation θ10 of the
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
Sp4(R) over the local field R in detail.


References

* * *. * * * {{DEFAULTSORT:Theta10 Representation theory Automorphic forms