ÄŒech Complex
   HOME

TheInfoList



OR:

In
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
and
topological data analysis In applied mathematics, topological based data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challengin ...
, the ÄŒech complex is an
abstract simplicial complex In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely ...
constructed from a point cloud in any
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
which is meant to capture
topological In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
information about the point cloud or the distribution it is drawn from. Given a finite point cloud ''X'' and an ''ε'' > 0, we construct the ÄŒech complex \check C_\varepsilon(X) as follows: Take the elements of ''X'' as the vertex set of \check C_\varepsilon(X) . Then, for each \sigma\subset X , let \sigma\in \check C_\varepsilon(X) if the set of ''ε''-balls centered at points of σ has a nonempty
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, thei ...
. In other words, the ÄŒech complex is the
nerve A nerve is an enclosed, cable-like bundle of nerve fibers (called axons) in the peripheral nervous system. A nerve transmits electrical impulses. It is the basic unit of the peripheral nervous system. A nerve provides a common pathway for the ...
of the set of ''ε''-balls centered at points of ''X''. By the nerve lemma, the Čech complex is homotopy equivalent to the union of the balls.


Relation to Vietoris–Rips complex

The Čech complex is a subcomplex of the Vietoris–Rips complex. While the Čech complex is more computationally expensive than the Vietoris–Rips complex, since we must check for higher order intersections of the balls in the complex, the nerve theorem provides a guarantee that the Čech complex is homotopy equivalent to union of the balls in the complex. The Vietoris-Rips complex may not be.


See also

* Vietoris–Rips complex *
Topological data analysis In applied mathematics, topological based data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challengin ...
*
ÄŒech cohomology In mathematics, specifically algebraic topology, ÄŒech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard ÄŒech. Motivation Let ''X'' be a topo ...
* Computational geometry *
Abstract simplicial complex In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely ...
*
Simplicial complex In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial ...
* Simplicial homology


References

{{reflist Algebraic topology