(2 1)-dimensional Topological Gravity
   HOME

TheInfoList



OR:

In two spatial and one time dimensions,
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
has no propagating gravitational degrees of freedom. In fact, in a vacuum, spacetime will always be locally flat (or de Sitter or anti-de Sitter depending upon the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is a coefficient that Albert Einstein initially added to his field equations of general rel ...
). This makes (2+1)-dimensional topological gravity (2+1D topological gravity) a topological theory with no gravitational local degrees of freedom. Physicists became interested in the relation between Chern–Simons theory and gravity during the 1980s. During this period,
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
argued that 2+1D topological gravity is equivalent to a
Chern–Simons theory The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who intr ...
with the
gauge group A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle P\to X with a structure Lie group G, a gauge group is defined to be a group of its vertical ...
SO(2,2) for a negative cosmological constant, and SO(3,1) for a positive one. This theory can be exactly solved, making it a
toy model A toy or plaything is an object that is used primarily to provide entertainment. Simple examples include toy blocks, board games, and dolls. Toys are often designed for use by children, although many are designed specifically for adults and ...
for
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
. The
Killing form In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) sho ...
involves the
Hodge dual In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the ...
. Witten later changed his mind, and argued that nonperturbatively 2+1D topological gravity differs from Chern–Simons because the functional measure is only over nonsingular vielbeins. He suggested the CFT dual is a monster conformal field theory, and computed the entropy of BTZ black holes.


References

Quantum gravity {{relativity-stub