HOME
*



picture info

Zeta Function Universality
In mathematics, the universality of List of zeta functions, zeta functions is the remarkable ability of the Riemann zeta function and other similar functions (such as the Dirichlet L-functions) to approximate arbitrary non-vanishing holomorphic functions arbitrarily well. The universality of the Riemann zeta function was first proven by in 1975 and is sometimes known as Voronin's universality theorem. Formal statement A mathematically precise statement of universality for the Riemann zeta function ζ(''s'') follows. Let ''U'' be a compact set, compact subset of the strip :\ such that the complement (set theory), complement of ''U'' is connected space, connected. Let be a continuous function on ''U'' which is Holomorphic function, holomorphic on the interior (topology), interior of ''U'' and does not have any zeros in ''U''. Then for any there exists a such that for all s\in U . Even more: the natural density#Upper and lower asymptotic density, lower density of the set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Voronin Universality Theorem
In mathematics, the universality of List of zeta functions, zeta functions is the remarkable ability of the Riemann zeta function and other similar functions (such as the Dirichlet L-functions) to approximate arbitrary non-vanishing holomorphic functions arbitrarily well. The universality of the Riemann zeta function was first proven by in 1975 and is sometimes known as Voronin's universality theorem. Formal statement A mathematically precise statement of universality for the Riemann zeta function ζ(''s'') follows. Let ''U'' be a compact set, compact subset of the strip :\ such that the complement (set theory), complement of ''U'' is connected space, connected. Let be a continuous function on ''U'' which is Holomorphic function, holomorphic on the interior (topology), interior of ''U'' and does not have any zeros in ''U''. Then for any there exists a such that for all s\in U . Even more: the natural density#Upper and lower asymptotic density, lower density of the set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Inferior
In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called infimum limit, limit infimum, liminf, inferior limit, lower limit, or inner limit; limit superior is also known as supremum limit, limit supremum, limsup, superior limit, upper limit, or outer limit. The limit inferior of a sequence x_n is denoted by \liminf_x_n\quad\text\quad \varliminf_x_n. The limit superior of a sequence x_n is denoted by \lims ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lerch Zeta Function
In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887. Definition The Lerch zeta function is given by :L(\lambda, s, \alpha) = \sum_^\infty \frac . A related function, the Lerch transcendent, is given by :\Phi(z, s, \alpha) = \sum_^\infty \frac . The two are related, as :\,\Phi(e^, s,\alpha)=L(\lambda, s, \alpha). Integral representations The Lerch transcendent has an integral representation: : \Phi(z,s,a)=\frac\int_0^\infty \frac\,dt The proof is based on using the integral definition of the Gamma function to write :\Phi(z,s,a)\Gamma(s) = \sum_^\infty \frac \int_0^\infty x^s e^ \frac = \sum_^\infty \int_0^\infty t^s z^n e^ \frac and then interchanging the sum and integral. The resulting integral representation converges for z \in \Complex \setm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selberg Zeta Function
The Selberg zeta-function was introduced by . It is analogous to the famous Riemann zeta function : \zeta(s) = \prod_ \frac where \mathbb is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the primes numbers. If \Gamma is a subgroup of SL(2,R), the associated Selberg zeta function is defined as follows, :\zeta_\Gamma(s)=\prod_p(1-N(p)^)^, or :Z_\Gamma(s)=\prod_p\prod^\infty_(1-N(p)^), where ''p'' runs over conjugacy classes of prime geodesics (equivalently, conjugacy classes of primitive hyperbolic elements of \Gamma), and ''N''(''p'') denotes the length of ''p'' (equivalently, the square of the bigger eigenvalue of ''p''). For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface. The zeros and poles of the Selberg zeta-function, ''Z''(''s' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linearly Independent
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne 0, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Theorem
In mathematics, Kronecker's theorem is a theorem about diophantine approximation, introduced by . Kronecker's approximation theorem had been firstly proved by L. Kronecker in the end of the 19th century. It has been now revealed to relate to the idea of n-torus and Mahler measure since the later half of the 20th century. In terms of physical systems, it has the consequence that planets in circular orbits moving uniformly around a star will, over time, assume all alignments, unless there is an exact dependency between their orbital periods. Statement Kronecker's theorem is a result in diophantine approximations applying to several real numbers ''xi'', for 1 ≤ ''i'' ≤ ''n'', that generalises Dirichlet's approximation theorem to multiple variables. The classical Kronecker approximation theorem is formulated as follows. :''Given real ''n''-tuples \alpha_i=(\alpha_,\cdots,\alpha_)\in\mathbb^n, i=1,\cdots,m and \beta=(\beta_1,\cdots,\beta_n)\in \mathbb^n , the condition: '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann Series Theorem
In mathematics, the Riemann series theorem (also called the Riemann rearrangement theorem), named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, or Divergent series, diverges. This implies that a series of real numbers is Absolute convergence, absolutely convergent if and only if it is Unconditional convergence, unconditionally convergent. As an example, the series 1 − 1 + 1/2 − 1/2 + 1/3 − 1/3 + ⋯ converges to 0 (for a sufficiently large number of terms, the partial sum gets arbitrarily near to 0); but replacing all terms with their absolute values gives 1 + 1 + 1/2 + 1/2 + 1/3 + 1/3 + ⋯, which sums to infinity. Thus the original series is conditionally convergent, and can be rearranged (by taking the first two positive terms followed by the first negative term, followed by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conditionally Convergent
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\sum_^m a_n exists (as a finite real number, i.e. not \infty or -\infty), but \sum_^\infty \left, a_n\ = \infty. A classic example is the alternating harmonic series given by 1 - + - + - \cdots =\sum\limits_^\infty , which converges to \ln (2), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see ''Riemann series theorem''. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R''n'' can converge. A typical conditionally convergent integral is that on the non-negative real axis of \sin (x^2) (see Fresnel integral). See also *Absolute convergen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardy Space
In complex analysis, the Hardy spaces (or Hardy classes) ''Hp'' are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the ''Lp'' spaces of functional analysis. For 1 ≤ ''p'' < ∞ these real Hardy spaces ''Hp'' are certain s of ''Lp'', while for ''p'' < 1 the ''Lp'' spaces have some undesirable properties, and the Hardy spaces are much better behaved. There are also higher-dimensional generalizations, consisting of certain holomorphic functions on

Bergman Space
In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain ''D'' of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for , the Bergman space is the space of all holomorphic functions f in ''D'' for which the p-norm is finite: :\, f\, _ := \left(\int_D , f(x+iy), ^p\,\mathrm dx\,\mathrm dy\right)^ < \infty. The quantity \, f\, _ is called the ''norm'' of the function ; it is a true if p \geq 1. Thus is the subspace of holomorphic functions that are in the space L''p''(''D''). The Bergman spaces are

picture info

Logarithm
In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of is , or . The logarithm of to ''base''  is denoted as , or without parentheses, , or even without the explicit base, , when no confusion is possible, or when the base does not matter such as in big O notation. The logarithm base is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number  as its base; its use is widespread in mathematics and physics, because of its very simple derivative. The binary logarithm uses base and is frequently used in computer science. Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations. They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]