Witness (mathematics)
   HOME
*





Witness (mathematics)
In mathematical logic, a witness is a specific value ''t'' to be substituted for variable ''x'' of an existential statement of the form ∃''x'' ''φ''(''x'') such that ''φ''(''t'') is true. Examples For example, a theory ''T'' of arithmetic is said to be inconsistent if there exists a proof in ''T'' of the formula "0 = 1". The formula I(''T''), which says that ''T'' is inconsistent, is thus an existential formula. A witness for the inconsistency of ''T'' is a particular proof of "0 = 1" in ''T''. Boolos, Burgess, and Jeffrey (2002:81) define the notion of a witness with the example, in which ''S'' is an ''n''-place relation on natural numbers, ''R'' is an ''(n+1)''-place recursive relation, and ↔ indicates logical equivalence (if and only if): :: ''S''(''x''1, ..., ''x''''n'') ↔ ∃''y'' ''R''(''x''1, . . ., ''x''''n'', ''y'') :"A ''y'' such that ''R'' holds of the ''xi'' may be called a 'witness' to the relation ''S'' holding of the ''xi'' (provide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Existential Quantification
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("" or "" or "). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for ''all'' members of the domain. Some sources use the term existentialization to refer to existential quantification. Basics Consider a formula that states that some natural number multiplied by itself is 25. : 0·0 = 25, or 1·1 = 25, or 2·2 = 25, or 3·3 = 25, ... This would seem to be a logical disjunction because of the repeated use of "or". However, the ellipses make this impossible to integrate and to interpret it as a disjunction in formal logic. Instead, the statement could be rephrased more formally a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computable Set
In computability theory, a set of natural numbers is called computable, recursive, or decidable if there is an algorithm which takes a number as input, terminates after a finite amount of time (possibly depending on the given number) and correctly decides whether the number belongs to the set or not. A set which is not computable is called noncomputable or undecidable. A more general class of sets than the computable ones consists of the computably enumerable (c.e.) sets, also called semidecidable sets. For these sets, it is only required that there is an algorithm that correctly decides when a number ''is'' in the set; the algorithm may give no answer (but not the wrong answer) for numbers not in the set. Formal definition A subset S of the natural numbers is called computable if there exists a total computable function f such that f(x)=1 if x\in S and f(x)=0 if x\notin S. In other words, the set S is computable if and only if the indicator function \mathbb_ is computable. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logical Equivalence
In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending on the notation being used. However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. Logical equivalences In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these. General logical equivalences Logical equivalences involving conditional statements :#p \implies q \equiv \neg p \vee q :#p \implies q \equiv \neg q \implies \neg p :#p \vee q \equiv \neg p \implies q :#p \wedge q \equiv \neg (p \implies \neg q) :#\neg (p \implies q) \equiv p \wedge \neg q :#(p \implies q) \wedge (p \impl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Predicate Calculus
Predicate or predication may refer to: * Predicate (grammar), in linguistics * Predication (philosophy) * several closely related uses in mathematics and formal logic: ** Predicate (mathematical logic) ** Propositional function ** Finitary relation, or n-ary predicate ** Boolean-valued function ** Syntactic predicate, in formal grammars and parsers **Functional predicate *Predication (computer architecture) *in United States law, the basis or foundation of something ** Predicate crime **Predicate rules, in the U.S. Title 21 CFR Part 11 * Predicate, a term used in some European context for either nobles' honorifics or for nobiliary particles See also * Predicate logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quanti ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Term (logic)
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact. A first-order term is recursively constructed from constant symbols, variables and function symbols. An expression formed by applying a predicate symbol to an appropriate number of terms is called an atomic formula, which evaluates to true or false in bivalent logics, given an interpretation. For example, is a term built from the constant 1, the variable , and the binary function symbols and ; it is part of the atomic formula which evaluates to true for each real-numbered value of . Besides in logic, terms play important roles in universal algebra, and rewriting systems. Formal definition Given a set ''V'' of variable symbols, a set ''C'' of constant symbols and sets ''F''''n'' of ''n''-ary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gödel's Completeness Theorem
Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first-order theory: If ''T'' is such a theory, and φ is a sentence (in the same language) and every model of ''T'' is a model of φ, then there is a (first-order) proof of φ using the statements of ''T'' as axioms. One sometimes says this as "anything universally true is provable". This does not contradict Gödel's incompleteness theorem, which shows that some formula φu is unprovable although true in the natural numbers, which are a particular model of a first-order theory describing them — φu is just false in some other model of the first-order theory being considered (such as a non-standard model of arithmetic for Peano arithmetic). It makes a close link between model theory that deals with what is true in different models, and proof theory th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leon Henkin
Leon Albert Henkin (April 19, 1921, Brooklyn, New York - November 1, 2006, Oakland, California) was an American logician, whose works played a strong role in the development of logic, particularly in the theory of types. He was an active scholar at the University of California, Berkeley, where he made great contributions as a researcher, teacher, as well as in administrative positions. At this university he directed, together with Alfred Tarski, the Group in Logic and the Methodology of Science',Manzano, María; Alonso, Enrique (2014). «Leon Henkin». In Manzano et al., María, ed. ''The Life and Work of Leon Henkin''. Springer International Publishing. pp. 3-22. . doi:10.1007/978-3-319-09719-0_11. from which many important logicians and philosophers emerged. He had a strong sense of social commitment and was a passionate defensor of his pacifist and progressive ideas. He took part in many social projects aimed at teaching mathematics, as well as projects aimed at supporting wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Game Semantics
Game semantics (german: dialogische Logik, translated as ''dialogical logic'') is an approach to formal semantics that grounds the concepts of truth or validity on game-theoretic concepts, such as the existence of a winning strategy for a player, somewhat resembling Socratic dialogues or medieval theory of Obligationes. History In the late 1950s Paul Lorenzen was the first to introduce a game semantics for logic, and it was further developed by Kuno Lorenz. At almost the same time as Lorenzen, Jaakko Hintikka developed a model-theoretical approach known in the literature as ''GTS'' (game-theoretical semantics). Since then, a number of different game semantics have been studied in logic. Shahid Rahman (Lille) and collaborators developed dialogical logic into a general framework for the study of logical and philosophical issues related to logical pluralism. Beginning 1994 this triggered a kind of renaissance with lasting consequences. This new philosophical impulse experienced a pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Quantifier
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any" or "for all". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable. It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("", "", or sometimes by "" alone). Universal quantification is distinct from ''existential'' quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain. Quantification in general is covered in the article on quantification (logic). The universal quantifier is encoded as in Unicode, and as \forall in LaTeX and re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Skolem Function
In mathematical logic, a formula of first-order logic is in Skolem normal form if it is in prenex normal form with only universal first-order quantifiers. Every first-order formula may be converted into Skolem normal form while not changing its satisfiability via a process called Skolemization (sometimes spelled Skolemnization). The resulting formula is not necessarily equivalent to the original one, but is equisatisfiable with it: it is satisfiable if and only if the original one is satisfiable. Reduction to Skolem normal form is a method for removing existential quantifiers from formal logic statements, often performed as the first step in an automated theorem prover. Examples The simplest form of Skolemization is for existentially quantified variables that are not inside the scope of a universal quantifier. These may be replaced simply by creating new constants. For example, \exists x P(x) may be changed to P(c), where c is a new constant (does not occur anywhere e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equisatisfiable
In Mathematical logic (a subtopic within the field of formal logic), two formulae are equisatisfiable if the first formula is satisfiable whenever the second is and vice versa; in other words, either both formulae are satisfiable or both are not. Equisatisfiable formulae may disagree, however, for a particular choice of variables. As a result, equisatisfiability is different from logical equivalence, as two equivalent formulae always have the same models. Whereas within equisatisfiable formulae, only the primitive proposition the formula imposes is valued. Equisatisfiability is generally used in the context of translating formulae, so that one can define a translation to be correct if the original and resulting formulae are equisatisfiable. Examples of translations involving this concept are Skolemization and some translations into conjunctive normal form In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]