Water Retention Curve
   HOME
*



picture info

Water Retention Curve
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. This curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability. Due to the hysteretic effect of water filling and draining the pores, different wetting and drying curves may be distinguished. The general features of a water retention curve can be seen in the figure, in which the volume water content, θ, is plotted against the matric potential, \Psi_m. At potentials close to zero, a soil is close to saturation, and water is held in the soil primarily by capillary forces. As θ decreases, binding of the water becomes stronger, and at small potentials (more negative, approaching wilting point) water is strongly bound in the smallest of pores, at contact points between grains and as films bound by adsorptive forc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Psychrometrics
Psychrometrics (or psychrometry, ; also called hygrometry) is the field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures. Common applications Although the principles of psychrometry apply to any physical system consisting of gas-vapor mixtures, the most common system of interest is the mixture of water vapor and air, because of its application in heating, ventilation, and air-conditioning and meteorology. In human terms, our thermal comfort is in large part a consequence of not just the temperature of the surrounding air, but (because we cool ourselves via perspiration) the extent to which that air is saturated with water vapor. Many substances are hygroscopic, meaning they attract water, usually in proportion to the relative humidity or above a critical relative humidity. Such substances include cotton, paper, cellulose, other wood products, sugar, calcium oxide (burned lime) and many chemicals and fertilizers. Industries that use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Water Content
Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ratio, which can range from 0 (completely dry) to the value of the materials' porosity at saturation. It can be given on a volumetric or mass (gravimetric) basis. Definitions Volumetric water content, θ, is defined mathematically as: :\theta = \frac where V_w is the volume of water and V_\text = V_s + V_w + V_a is equal to the total volume of the wet material, i.e. of the sum of the volume of solid host material (e.g., soil particles, vegetation tissue) V_s, of water V_w, and of air V_a. Gravimetric water content is expressed by mass (weight) as follows: :u = \frac where m_w is the mass of water and m_s is the mass of the solids. For materials that change in volume with water content, such as coal, the gravimetric water content, ''u' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Water Potential
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension). The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ. Water potential integrates a variety of different potential drivers of water movement, which may operate in the same or different directions. Within complex biological systems, many potential factors may be operating simultaneously. For example, the addition of solutes lowers the potential (negative vector), while an increase in pressure increases the potential (positive vector). If the flow is not restricte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Capacity
Field capacity is the amount of soil moisture or water content held in the soil after excess water has drained away and the rate of downward movement has decreased. This usually takes place 2–3 days after rain or irrigation in pervious soils of uniform structure and texture. The physical definition of field capacity (expressed symbolically as θfc) is the bulk water content retained in soil at −33 kPa (or −0.33 bar) of hydraulic head or suction pressure. The term originated from Israelsen and West and Frank Veihmeyer and Arthur Hendrickson. Veihmeyer and Hendrickson realized the limitation in this measurement and commented that it is ''affected by so many factors that, precisely, it is not a constant'' (for a particular soil), ''yet it does serve as a practical measure of soil water-holding capacity''. Field capacity improves on the concept of moisture equivalent by Lyman Briggs. Veihmeyer & Hendrickson proposed this concept as an attempt to improve water-use efficiency for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soil Aggregate Stability
Soil aggregate stability is a measure of the ability of soil aggregates— soil particles that bind together—to resist breaking apart when exposed to external forces such as water erosion and wind erosion, shrinking and swelling processes, and tillage. Soil aggregate stability is a measure of soil structure and can be affected by soil management. Overview Aggregate stability is one of indicators of soil quality, as it combines soil physical, chemical, and biological properties. The formation of soil aggregates (or so-called secondary soil particles or peds) occurs due to interactions of primary soil particles (i.e., clay) through rearrangement, flocculation and cementation. Aggregate stability has a direct impact on soil pore size distribution, which affects soil water retention and water movement in soil, therefore affecting air movement. A soil with good soil structure typically has a mix of micro-, meso-, and macropores. Therefore, with more aggregation, you would expect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hysteresis
Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are different values of one variable depending on the direction of change of another variable. This history dependence is the basis of memory in a hard disk drive and the remanence that retains a record of the Earth's magnetic field magnitude in the past. Hysteresis occurs in ferromagnetic and ferroelectric materials, as well as in the deformation of rubber bands and shape-memory alloys and many other natural phenomena. In natural systems it is often associated with irreversible thermodynamic change such as phase transitions and with internal friction; and dissipation is a common side effect. Hysteresis can be found in physics, chemistry, engineering, biology, and economics. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilting Point
Permanent wilting point (PWP) or wilting point (WP) is defined as the minimum amount of water in the soil that the plant requires not to wilt. If the soil water content decreases to this or any lower point a plant wilts and can no longer recover its turgidity when placed in a saturated atmosphere for 12 hours. The physical definition of the wilting point, symbolically expressed as or , is said by convention as the water content at of suction pressure, or negative hydraulic head. History The concept was introduced in the early 1910s. Lyman Briggs and Homer LeRoy Shantz (1912) proposed the wilting coefficient, which is defined as ''the percentage water content of a soil when the plants growing in that soil are first reduced to a wilted condition from which they cannot recover in approximately saturated atmosphere without the addition of water to the soil''. See pedotransfer function for wilting coefficient by Briggs. Frank Veihmeyer and Arthur Hendrickson from University of Ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wrc Buckingham
WRC may refer to: Broadcasting stations * WRC-TV, a television station (virtual channel 4, digital channel 34) licensed to Washington, D.C., United States * Several radio stations in the Washington, D.C. area: ** WTEM, a radio station (980 AM) licensed to Washington, D.C., United States, which used the call sign WRC from 1923 until February 1984 ** WKYS, a radio station (93.9 FM) licensed to Washington, D.C., United States, which used the call sign WRC-FM from 1947 until 1974 ** WWRC, a radio station (570 AM) licensed to Bethesda, Maryland ** WQOF, a radio station (1260 AM) licensed to Washington, D.C., which used the branding "1260 WRC" from 2010 until 2014 Motor sports * World Rally Championship, an international car rallying competition **World Rally Car, car built to World Rally Championship specifications Rugby clubs in England * Wednesbury Rugby Club * Whitchurch Rugby Club * Wirral Rugby Club Video games * ''World Rally Championship'' (video game series) * '' WRC: Ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edgar Buckingham
Edgar Buckingham (July 8, 1867 in Philadelphia, Pennsylvania – April 29, 1940 in Washington DC) was an American physicist. He graduated from Harvard University with a bachelor's degree in physics in 1887. He did graduate work at Strasbourg and then studied under the chemist Wilhelm Ostwald at Leipzig, from which he was granted a PhD in 1893. He worked at the USDA Bureau of Soils from 1902 to 1906 as a soil physicist. He worked at the (US) National Bureau of Standards (now the National Institute of Standards and Technology, or NIST) 1906–1937. His fields of expertise included soil physics, gas properties, acoustics, fluid mechanics, and blackbody radiation. He is also the originator of the Buckingham π theorem in the field of dimensional analysis. In 1923, Buckingham published a report which voiced skepticism that jet propulsion would be economically competitive with prop driven aircraft at low altitudes and at the speeds of that period. Buckingham's first work on soil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Effective Saturation
Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ratio, which can range from 0 (completely dry) to the value of the materials' porosity at saturation. It can be given on a volumetric or mass (gravimetric) basis. Definitions Volumetric water content, θ, is defined mathematically as: :\theta = \frac where V_w is the volume of water and V_\text = V_s + V_w + V_a is equal to the total volume of the wet material, i.e. of the sum of the volume of solid host material (e.g., soil particles, vegetation tissue) V_s, of water V_w, and of air V_a. Gravimetric water content is expressed by mass (weight) as follows: :u = \frac where m_w is the mass of water and m_s is the mass of the solids. For materials that change in volume with water content, such as coal, the gravimetric water content, ''u'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least-squares
The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each individual equation. The most important application is in data fitting. When the problem has substantial uncertainties in the independent variable (the ''x'' variable), then simple regression and least-squares methods have problems; in such cases, the methodology required for fitting errors-in-variables models may be considered instead of that for least squares. Least squares problems fall into two categories: linear or ordinary least squares and nonlinear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Soil Water (retention)
Soils can process and hold considerable amounts of water. They can take in water, and will keep doing so until they are full, or until the rate at which they can transmit water into and through the pores is exceeded. Some of this water will steadily drain through the soil (via gravity) and end up in the waterways and streams, but much of it will be retained, despite the influence of gravity. Much of this retained water can be used by plants and other organisms, also contributing to land productivity and soil health. Soil water retention capacity Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile. The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water.Leeper, G.W. & Uren, N.C., 1993. ''Soil Science: An Introduction'', 5th edn. Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]