HOME
*





Weighted Projective Space
In algebraic geometry, a weighted projective space P(''a''0,...,''a''''n'') is the projective variety Proj(''k'' 'x''0,...,''x''''n'' associated to the graded ring ''k'' 'x''0,...,''x''''n''where the variable ''x''''k'' has degree ''a''''k''. Properties *If ''d'' is a positive integer then P(''a''0,''a''1,...,''a''''n'') is isomorphic to P(''da''0,''da''1,...,''da''''n''). This is a property of the Proj construction; geometrically it corresponds to the ''d''-tuple Veronese embedding. So without loss of generality one may assume that the degrees ''a''''i'' have no common factor. *Suppose that ''a''''0'',''a''''1'',...,''a''''n'' have no common factor, and that ''d'' is a common factor of all the ''a''i with ''i''≠''j'', then P(''a''0,''a''1,...,''a''''n'') is isomorphic to P(''a''0/d,...,''a''j-1/d,''a''j,''a''j+1/d,...,''a''''n''/d) (note that ''d'' is coprime to ''a''''j''; otherwise the isomorphism does not hold). So one may further assume that any set of ''n'' variables ''a'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables with coefficients in ''k'', that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb^n. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proj
PROJ (formerly PROJ.4) is a library for performing conversions between cartographic projections. The library is based on the work of Gerald Evenden at the United States Geological Survey (USGS), but since 2019-11-26 is an Open Source Geospatial Foundation (OSGeo) project maintained by the PROJ Project Steering Committee (PSC). The library also ships with executables for performing these transformations from the command line. History The history of PROJ dates back to the late 1970s, and the first release of PROJ was developed by Gerald Evenden in the early 1980s as a Ratfor program. It was based on the General Cartographic Transformation Package or GCTP, which consisted of Fortran subroutines that could be used to project geographic data. The second release of PROJ from 1985 was rewritten in C to run on UNIX systems. The third release of PROJ from 1990, was expanded to support approximately 70 cartographic projections. Evenden further developed a fourth release in 1994, named P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graded Ring
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading. A graded module is defined similarly (see below for the precise definition). It generalizes graded vector spaces. A graded module that is also a graded ring is called a graded algebra. A graded ring could also be viewed as a graded \Z-algebra. The associativity is not important (in fact not used at all) in the definition of a graded ring; hence, the notion applies to non-associative algebras as well; e.g., one can consider a graded Lie algebra. First properties Generally, the index set of a graded ring is assumed to be the set of nonnegative integers, unless otherwise explicitly specified. This is the case in this article. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proj Construction
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Proj of a graded ring Proj as a set Let S be a graded ring, whereS = \bigoplus_ S_iis the direct sum decomposition associated with the gradation. The irrelevant ideal of S is the ideal of elements of positive degreeS_+ = \bigoplus_ S_i .We say an ideal is homogeneous if it is generated by homogeneous elements. Then, as a set,\operatorname S = \. For brevity we will sometimes write X for \operatorname S. Proj as a topological space We may define a topology, called the Zariski topology, on \operatorname S by defining the closed sets to be those of the form :V(a) = \, where a is a homogeneous ideal of S. As in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Veronese Embedding
In mathematics, the Veronese surface is an algebraic surface in five-dimensional projective space, and is realized by the Veronese embedding, the embedding of the projective plane given by the complete linear system of conics. It is named after Giuseppe Veronese (1854–1917). Its generalization to higher dimension is known as the Veronese variety. The surface admits an embedding in the four-dimensional projective space defined by the projection from a general point in the five-dimensional space. Its general projection to three-dimensional projective space is called a Steiner surface. Definition The Veronese surface is the image of the mapping :\nu:\mathbb^2\to \mathbb^5 given by :\nu: :y:z\mapsto ^2:y^2:z^2:yz:xz:xy/math> where :\cdots/math> denotes homogeneous coordinates. The map \nu is known as the Veronese embedding. Motivation The Veronese surface arises naturally in the study of conics. A conic is a degree 2 plane curve, thus defined by an equation: :Ax^2 + Bxy + C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fano Variety
In algebraic geometry, a Fano variety, introduced by Gino Fano in , is a complete variety ''X'' whose anticanonical bundle ''K''X* is ample. In this definition, one could assume that ''X'' is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties. Examples * The fundamental example of Fano varieties are the projective spaces: the anticanonical line bundle of P''n'' over a field ''k'' is ''O''(''n''+1), which is very ample (over the complex numbers, its curvature is ''n+1'' times the Fubini–Study symplectic form). * Let ''D'' be a smooth codimension-1 subvari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toric Variety
In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable. For a certain special, but still quite general class of toric varieties, this information is also encoded in a polytope, which creates a powerful connection of the subject with convex geometry. Familiar examples of toric varieties are affine space, projective spaces, products of projective spaces and bundles over projective space. Toric varieties from tori The original motivation to study toric varieties was to study torus embeddings. Given the algebraic t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GIT Quotient
In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme X = \operatorname A with an action by a group scheme ''G'' is the affine scheme \operatorname(A^G), the prime spectrum of the ring of invariants of ''A'', and is denoted by X /\!/ G. A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of \operatorname, one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has :G / H = G /\!/ H = \operatorname\!\big(k H\big) for an algebraic group ''G'' over a field ''k'' and closed subgroup ''H''. If ''X'' is a complex smooth projective variety and if ''G'' is a reductive co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]