Violarite
   HOME
*





Violarite
Violarite ( Fe2+ Ni23+ S4) is a supergene sulfide mineral associated with the weathering and oxidation of primary pentlandite nickel sulfide ore minerals. Violarite crystallises in the isometric system, with a hardness of 4.5 to 5.5 and a specific gravity of about 4, is dark violet grey to copper-red, often with verdigris and patina from associated copper and arsenic sulfides, and is typically in amorphous to massive infill of lower saprolite ultramafic lithologies. Violarite has a characteristic violet colour, hence the name from the Latin 'violaris' alluding to its colour especially when viewed in polished section under a microscope. Paragenesis Violarite is formed by oxidisation of primary sulfide assemblages in nickel sulfide mineralisation. The process of formation involves oxidation of Ni2+ and Fe2+ which is contained within the primary pentlandite-pyrrhotite-pyrite assemblage. Violarite is produced at the expense of both pentlandite and pyrrhotite, via the following ba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sulfide Mineral
The sulfide minerals are a class of minerals containing sulfide (S2−) or disulfide (S22−) as the major anion. Some sulfide minerals are economically important as metal ores. The sulfide class also includes the selenides, the tellurides, the arsenides, the antimonides, the bismuthinides, the sulfarsenides and the sulfosalts.http://www.minerals.net/mineral/sort-met.hod/group/sulfgrp.htm Minerals.net Dana Classification, SulfidesKlein, Cornelis and Cornelius S. Hurlbut, Jr., 1986, ''Manual of Mineralogy'', Wiley, 20th ed., pp 269-293 Sulfide minerals are inorganic compounds. Minerals Common or important examples include: * Acanthite *Chalcocite *Bornite * Galena * Sphalerite *Chalcopyrite *Pyrrhotite *Millerite *Pentlandite *Covellite *Cinnabar *Realgar *Orpiment *Stibnite *Pyrite *Marcasite *Molybdenite Sulfarsenides: *Cobaltite *Arsenopyrite *Gersdorffite Sulfosalts: *Pyrargyrite *Proustite *Tetrahedrite *Tennantite *Enargite *Bournonite * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thiospinel Group
The thiospinel group is a group of sulfide minerals with a general formula where A is nominally a +2 metal, B is a +3 metal and X is -2 sulfide or similar anion (selenide or telluride). ''Thio'' refers to sulfur and ''spinel'' indicates their isometric spinel-like structure. As the chalcogens S, Se and Te are less electronegative than oxygen, the bonding in these materials is generally more covalent than in the oxospinels. Some are (magnetic) semiconductors but others display, at times complicated, metallic behavior, often coupled with equally complicated magnetic properties. The assignment of oxidation states is also not always as straightforward as in the more ionic oxocompounds, as is shown in the case of carrollite. Group members include: * Cadmoindite – * Carrollite – * Fletcherite – * Greigite – * Indite – * Kalininite – * Linnaeite – * Polydymite - * Siegenite – * Tyrrellite – * Violarite Violarite ( Fe2+ Ni23+ S4) is a supergene sulfide min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Economic Geology
Economic geology is concerned with earth materials that can be used for economic and/or industrial purposes. These materials include precious and base metals, nonmetallic minerals and construction-grade stone. Economic geology is a subdiscipline of the geosciences; according to Lindgren (1933) it is “the application of geology”. Today, it may be called the scientific study of the Earth's sources of mineral raw materials and the practical application of the acquired knowledge. The term commonly refers to metallic mineral deposits and mineral resources. The techniques employed by other earth science disciplines (such as geochemistry, mineralogy, geophysics, petrology, paleontology and structural geology) might all be used to understand, describe, and exploit an ore deposit. Economic geology is studied and practiced by geologists. Economic geology may be of interest to other professions such as engineers, environmental scientists, and conservationists because of the far-reachi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iron(II) Minerals
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in front of oxygen (32.1% and 30.1%, respectively), forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust. In its metallic state, iron is rare in the Earth's crust, limited mainly to deposition by meteorites. Iron ores, by contrast, are among the most abundant in the Earth's crust, although extracting usable metal from them requires kilns or furnaces capable of reaching or higher, about higher than that required to smelt copper. Humans started to master that process in Eurasia during the 2nd millennium BCE and the use of iron tools and weapons began to displace copper alloys, in some regions, only around 1200 BCE. That event is considered the transition from the Bronze Age to the Iron Age. In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nickel Minerals
Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to react with air under standard conditions because a passivation layer of nickel oxide forms on the surface that prevents further corrosion. Even so, pure native nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks, and in the interiors of larger nickel–iron meteorites that were not exposed to oxygen when outside Earth's atmosphere. Meteoric nickel is found in combination with iron, a reflection of the origin of those elements as major end products of supernova nucleosynthesis. An iron–nickel mixture is thought to compose Earth's outer and inner cores. Use of nickel (as natural meteoric nickel–iron alloy) has been traced as far back as 3500 BCE. Nickel was first isolated and classified as an el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metallurgy
Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the science and the technology of metals; that is, the way in which science is applied to the production of metals, and the engineering of metal components used in products for both consumers and manufacturers. Metallurgy is distinct from the craft of metalworking. Metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. A specialist practitioner of metallurgy is known as a metallurgist. The science of metallurgy is further subdivided into two broad categories: chemical metallurgy and physical metallurgy. Chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. Subjects of study in chemical metallurgy include mi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hellyerite
{{infobox mineral , name = Hellyerite , image = Hellyerite-Heazlewoodite-Zaratite-255032.jpg , imagesize = 260px , alt = , caption = Zaratite (emerald-green coating), hellyerite (powder-blue) and heazlewoodite (light bronze) , category = Carbonate mineral , formula = NiCO3·6(H2O) , IMAsymbol = Hy , molweight = , strunz = 5.CA.20 , dana = , system = Monoclinic , class = Prismatic (2/m) (same H-M symbol) , symmetry = ''C2/c'' , unit cell = a = 10.77, b = 7.29 c = 18.68  β = 94°: Z = 8 , color = Pale blue , colour = , habit = As crystal fragments and microcrystalline coatings , twinning = Fine lamellar parallel to cleavage , cleavage = One perfect, two good at 112° to each other and perpendicular to the perfect cleavage , fracture = , tenacity = , mohs = 2.5 , luster = Vitreous , streak = , diaphaneity = Semitransparent , g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Widgiemoolthalite
Widgiemoolthalite is a rare hydrated nickel(II) carbonate mineral with the chemical formula . Usually bluish-green in color, it is a brittle mineral formed during the weathering of nickel sulfide. Present on gaspéite surfaces, widgiemoolthalite has a Mohs scale hardness of 3.5 and an unknown though likely disordered crystal structure. Widgiemoolthalite was first discovered in 1992 in Widgiemooltha, Western Australia, which is to date its only known source. It was named the following year by the three researchers who first reported its existence, Ernest H. Nickel, Bruce W. Robinson, and William G. Mumme. Origins One consequence of the 1966 discovery of nickel deposits in Western Australia and subsequent nickel mining boom was the discovery of novel secondary mineral species in mined regions beginning in the mid-1970s. Widgiemoolthalite was first found at 132 North, a nickel deposit near Widgiemooltha, Western Australia, controlled by the Western Mining Corporation. Blair J. Gart ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polydymite
Polydymite, Ni2+Ni23+S4, is a supergene thiospinel sulfide mineral associated with the weathering of primary pentlandite nickel sulfide. Polydymite crystallises in the isometric system, with a hardness of 4.5 to 5.5 and a specific gravity of about 4, is dark violet gray to copper-red, often with verdigris and patina from associated copper and arsenic sulfides, and is typically in amorphous to massive infill of lower saprolite ultramafic lithologies. Polydymite is the nickel equivalent of violarite and in many cases these two minerals are formed together, potentially in solid solution. Common contaminants of polydymite are cobalt and iron. Polydymite forms a series with linnaeite, Co+2Co+32S4. Paragenesis Polydymite is formed by oxidisation of primary sulfide assemblages in nickel sulfide mineralisation. The process of formation involves oxidation of Ni2+ and Fe2+ which is contained within the primary pentlandite-pyrrhotite-pyrite assemblage. Continued oxidation of polydymi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dunite
Dunite (), also known as olivinite (not to be confused with the mineral olivenite), is an intrusive igneous rock of ultramafic composition and with phaneritic (coarse-grained) texture. The mineral assemblage is greater than 90% olivine, with minor amounts of other minerals such as pyroxene, chromite, magnetite, and pyrope. Dunite is the olivine-rich endmember of the peridotite group of mantle-derived rocks. Dunite and other peridotite rocks are considered the major constituents of the Earth's mantle above a depth of about . Dunite is rarely found within continental rocks, but where it is found, it typically occurs at the base of ophiolite sequences where slabs of mantle rock from a subduction zone have been thrust onto continental crust by obduction during continental or island arc collisions (orogeny). It is also found in alpine peridotite massifs that represent slivers of sub-continental mantle exposed during collisional orogeny. Dunite typically undergoes retrograde metamorp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regolith
Regolith () is a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock. It includes dust, broken rocks, and other related materials and is present on Earth, the Moon, Mars, some asteroids, and other terrestrial planets and moons. Etymology The term ''regolith'' combines two Greek words: (), 'blanket', and (), 'rock'. The American geologist George P. Merrill first defined the term in 1897, writing: Earth Earth's regolith includes the following subdivisions and components: * soil or pedolith * alluvium and other transported cover, including that transported by aeolian, glacial, marine, and gravity flow processes. * "saprolith'", generally divided into the ** ''upper saprolite'': completely oxidised bedrock ** ''lower saprolite'': chemically reduced partially weathered rocks ** ''saprock'': fractured bedrock with weathering restricted to fracture margins * volcanic ash and lava flows that are interbedded with unconsolidated material * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]