Vertex Separator
   HOME



picture info

Vertex Separator
In graph theory, a vertex subset is a vertex separator (or vertex cut, separating set) for nonadjacent Vertex (graph theory), vertices and if the Graph partition, removal of from the Graph (discrete mathematics), graph separates and into distinct connected component (graph theory), connected components. Examples Consider a grid graph with rows and columns; the total number of vertices is . For instance, in the illustration, , , and . If is odd, there is a single central row, and otherwise there are two rows equally close to the center; similarly, if is odd, there is a single central column, and otherwise there are two columns equally close to the center. Choosing to be any of these central rows or columns, and removing from the graph, partitions the graph into two smaller connected subgraphs and , each of which has at most vertices. If (as in the illustration), then choosing a central column will give a separator with r \leq \sqrt vertices, and similarly if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Centered Tree
In the mathematical subfield of graph theory, a centered tree is a tree with only one center, and a bicentered tree is a tree with two centers. Given a graph, the eccentricity of a vertex is defined as the greatest distance from to any other vertex. A ''center'' of a graph is a vertex with minimal eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g .... A graph can have an arbitrary number of centers. However, has proved that for trees, there are only two possibilities: # The tree has precisely one center (centered trees). # The tree has precisely two centers (bicentered trees). In this case, the two centers are adjacent. A proof of this fact is given, for example, by Harary., Theorem 4.2 Notes References * * External links * * Trees (graph theory) {{ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-vertex-connected Graph
In graph theory, a connected Graph (discrete mathematics), graph is said to be -vertex-connected (or -connected) if it has more than Vertex (graph theory), vertices and remains Connectivity (graph theory), connected whenever fewer than vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest for which the graph is -vertex-connected. Definitions A graph (other than a complete graph) has connectivity ''k'' if ''k'' is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them. In complete graphs, there is no subset whose removal would disconnect the graph. Some sources modify the definition of connectivity to handle this case, by defining it as the size of the smallest subset of vertices whose deletion results in either a disconnected graph or a single vertex. For this variation, the connectivity of a complete graph K_n is n-1. An equivalent definition is that a graph with at least two vertic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clique (graph Theory)
In graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied. Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term ''clique'' comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics. Definiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Lattice
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only ''pairs'' of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete. Complete lattices appear in many applications in mathematics and computer science. Both order theory and universal algebra study them as a special class of lattices. Complete lattices must not be confused with complete partial orders (CPOs), a more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (locales). Formal definition A ''complete lattice'' is a partially ordered set (''L'', ≤) such that every subset ''A'' of ''L'' has both a greatest lower bound (the infimum, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preorder
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. The name is meant to suggest that preorders are ''almost'' partial orders, but not quite, as they are not necessarily Antisymmetric relation, antisymmetric. A natural example of a preorder is the Divisor#Definition, divides relation "x divides y" between integers, polynomials, or elements of a commutative ring. For example, the divides relation is reflexive as every integer divides itself. But the divides relation is not antisymmetric, because 1 divides -1 and -1 divides 1. It is to this preorder that "greatest" and "lowest" refer in the phrases "greatest common divisor" and "lowest common multiple" (except that, for integers, the greatest common divisor is also the greatest for the natural order of the integers). Preorders are closely related to equivalence relations and (non-strict) partial orders. Both of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities (known as ''axioms'') that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Separator Theorem
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an -vertex graph (where the invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most vertices. A weaker form of the separator theorem with vertices in the separator instead of was originally proven by , and the form with the tight asymptotic bound on the separator size was first proven by . Since their work, the separator theorem has been reproven in several different ways, the constant in the term of the theorem has been improved, and it has been extended to certain classes of nonplanar graphs. Repeated application of the separator theorem produces a separator hierarchy which may take the form of either a tree decomposition or a branch-decomposition of the graph. Separator hierarchi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Tree
In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A directed tree, oriented tree,See .See . polytree,See . or singly connected networkSee . is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an arborescence or out-tree—or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centered Tree
In the mathematical subfield of graph theory, a centered tree is a tree with only one center, and a bicentered tree is a tree with two centers. Given a graph, the eccentricity of a vertex is defined as the greatest distance from to any other vertex. A ''center'' of a graph is a vertex with minimal eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g .... A graph can have an arbitrary number of centers. However, has proved that for trees, there are only two possibilities: # The tree has precisely one center (centered trees). # The tree has precisely two centers (bicentered trees). In this case, the two centers are adjacent. A proof of this fact is given, for example, by Harary., Theorem 4.2 Notes References * * External links * * Trees (graph theory) {{ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]