HOME
*



picture info

Vertex Separator
In graph theory, a vertex subset is a vertex separator (or vertex cut, separating set) for nonadjacent vertices and if the removal of from the graph separates and into distinct connected components. Examples Consider a grid graph with rows and columns; the total number of vertices is . For instance, in the illustration, , , and . If is odd, there is a single central row, and otherwise there are two rows equally close to the center; similarly, if is odd, there is a single central column, and otherwise there are two columns equally close to the center. Choosing to be any of these central rows or columns, and removing from the graph, partitions the graph into two smaller connected subgraphs and , each of which has at most vertices. If (as in the illustration), then choosing a central column will give a separator with r \leq \sqrt vertices, and similarly if then choosing a central row will give a separator with at most \sqrt vertices. Thus, every grid graph has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Centered Tree
In the mathematical subfield of graph theory, a centered tree is a tree with only one center, and a bicentered tree is a tree with two centers. Given a graph, the eccentricity of a vertex is defined as the greatest distance from to any other vertex. A ''center'' of a graph is a vertex with minimal eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g .... A graph can have an arbitrary number of centers. However, has proved that for trees, there are only two possibilities: # The tree has precisely one center (centered trees). # The tree has precisely two centers (bicentered trees). In this case, the two centers are adjacent. A proof of this fact is given, for example, by Harary., Theorem 4.2 Notes References * * External links * * Trees (graph theory) {{to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-vertex-connected Graph
In graph theory, a connected graph is said to be -vertex-connected (or -connected) if it has more than vertices and remains connected whenever fewer than vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest for which the graph is -vertex-connected. Definitions A graph (other than a complete graph) has connectivity ''k'' if ''k'' is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them. Complete graphs are not included in this version of the definition since they cannot be disconnected by deleting vertices. The complete graph with ''n'' vertices has connectivity ''n'' − 1, as implied by the first definition. An equivalent definition is that a graph with at least two vertices is ''k''-connected if, for every pair of its vertices, it is possible to find ''k'' vertex-independent paths connecting these vertices; see Menger's theorem . This definition produces the sam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clique (graph Theory)
In the mathematical area of graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied. Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term ''clique'' comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chordal Graph
In the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a ''chord'', which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree. They are sometimes also called rigid circuit graphs. or triangulated graphs.. Chordal graphs are a subset of the perfect graphs. They may be recognized in linear time, and several problems that are hard on other classes of graphs such as graph coloring may be solved in polynomial time when the input is chordal. The treewidth of an arbitrary graph may be characterized by the size of the cliques in the chordal graphs that contain it. Perfect elimination and efficient recogni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Lattice
In mathematics, a complete lattice is a partially ordered set in which ''all'' subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a ''conditionally complete lattice.'' Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra. Complete lattices must not be confused with complete partial orders (''cpo''s), which constitute a strictly more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (''locales''). Formal definition A partially ordered set (''L'', ≤) is a ''complete lattice'' if every subset ''A'' of ''L'' has both a greatest lower bound (the infimum, also called the ''meet'') and a least upper bound (the supremum, also called the ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preorder
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder: an antisymmetric (or skeletal) preorder is a partial order, and a symmetric preorder is an equivalence relation. The name comes from the idea that preorders (that are not partial orders) are 'almost' (partial) orders, but not quite; they are neither necessarily antisymmetric nor asymmetric. Because a preorder is a binary relation, the symbol \,\leq\, can be used as the notational device for the relation. However, because they are not necessarily antisymmetric, some of the ordinary intuition associated to the symbol \,\leq\, may not apply. On the other hand, a preorder can be used, in a straightforward fashion, to define a partial order and an equivalence relation. Doing so, however, is not always useful or worthwh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called ''scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Separator Theorem
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an -vertex graph (where the invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most vertices. A weaker form of the separator theorem with vertices in the separator instead of was originally proven by , and the form with the tight asymptotic bound on the separator size was first proven by . Since their work, the separator theorem has been reproven in several different ways, the constant in the term of the theorem has been improved, and it has been extended to certain classes of nonplanar graphs. Repeated application of the separator theorem produces a separator hierarchy which may take the form of either a tree decomposition or a branch-decomposition of the graph. Separator hierarc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Tree
In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Centered Tree
In the mathematical subfield of graph theory, a centered tree is a tree with only one center, and a bicentered tree is a tree with two centers. Given a graph, the eccentricity of a vertex is defined as the greatest distance from to any other vertex. A ''center'' of a graph is a vertex with minimal eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g .... A graph can have an arbitrary number of centers. However, has proved that for trees, there are only two possibilities: # The tree has precisely one center (centered trees). # The tree has precisely two centers (bicentered trees). In this case, the two centers are adjacent. A proof of this fact is given, for example, by Harary., Theorem 4.2 Notes References * * External links * * Trees (graph theory) {{to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]