Unit Function
   HOME
*





Unit Function
In number theory, the unit function is a completely multiplicative function on the positive integers defined as: :\varepsilon(n) = \begin 1, & \mboxn=1 \\ 0, & \mboxn \neq 1 \end It is called the unit function because it is the identity element for Dirichlet convolution.. It may be described as the " indicator function of 1" within the set of positive integers. It is also written as ''u''(''n'') (not to be confused with ''μ''(''n''), which generally denotes the Möbius function). See also * Möbius inversion formula * Heaviside step function * Kronecker delta In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 & ... References Multiplicative functions 1 (number) {{numtheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Function
In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime. An arithmetic function ''f''(''n'') is said to be completely multiplicative (or totally multiplicative) if ''f''(1) = 1 and ''f''(''ab'') = ''f''(''a'')''f''(''b'') holds ''for all'' positive integers ''a'' and ''b'', even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(''n''): the constant function, defined by 1(''n'') = 1 (completely multiplicative) * Id(''n''): identity function, defined by Id(''n'') = ''n'' (completely multiplicative) * Id''k''(''n''): the power functions, defined by Id''k''(''n'') = ''n''''k'' for any complex number ''k'' (completely multiplicative). As special cases we have ** Id0(''n'') = 1(''n'') and ** Id1(''n'') = Id(''n''). * ''ε''(''n''): the function defined by ''ε''(''n'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set  equipped with a binary operation ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Convolution
In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet. Definition If f , g : \mathbb\to\mathbb are two arithmetic functions from the positive integers to the complex numbers, the ''Dirichlet convolution'' is a new arithmetic function defined by: : (f*g)(n) \ =\ \sum_ f(d)\,g\!\left(\frac\right) \ =\ \sum_\!f(a)\,g(b) where the sum extends over all positive divisors ''d'' of ''n'', or equivalently over all distinct pairs of positive integers whose product is ''n''. This product occurs naturally in the study of Dirichlet series such as the Riemann zeta function. It describes the multiplication of two Dirichlet series in terms of their coefficients: :\left(\sum_\frac\right) \left(\sum_\frac\right) \ = \ \left(\sum_\frac\right). Properties The set of arithmetic functions forms a commutative ring, the , under pointwise addition, where is defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . Nota ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Function
The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted . Definition For any positive integer , define as the sum of the primitive th roots of unity. It has values in depending on the factorization of into prime factors: * if is a square-free positive integer with an even number of prime factors. * if is a square-free positive integer with an odd number of prime factors. * if has a squared prime factor. The Möbius function can alternatively be represented as : \mu(n) = \delta_ \lambda(n), where is the Kronecker delta, is the Liouville function, is the number of dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Möbius Inversion Formula
In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius. A large generalization of this formula applies to summation over an arbitrary locally finite partially ordered set, with Möbius' classical formula applying to the set of the natural numbers ordered by divisibility: see incidence algebra. Statement of the formula The classic version states that if and are arithmetic functions satisfying : g(n)=\sum_f(d)\quad\textn\ge 1 then :f(n)=\sum_\mu(d)g\left(\frac\right)\quad\textn\ge 1 where is the Möbius function and the sums extend over all positive divisors of (indicated by d \mid n in the above formulae). In effect, the original can be determined given by using the inversion formula. The two sequences are said to be Möbius transforms of each other. The formula is also correct if and are funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heaviside Step Function
The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive arguments. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one. The function was originally developed in operational calculus for the solution of differential equations, where it represents a signal that switches on at a specified time and stays switched on indefinitely. Oliver Heaviside, who developed the operational calculus as a tool in the analysis of telegraphic communications, represented the function as . The Heaviside function may be defined as: * a piecewise function: H(x) := \begin 1, & x > 0 \\ 0, & x \le 0 \end * using the Iverson bracket notation: H(x) := 0.html" ;"title=">0">>0/math> * an indicator function: H(x) := \mathbf_=\mathbf 1_(x) * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Functions
In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime. An arithmetic function ''f''(''n'') is said to be completely multiplicative (or totally multiplicative) if ''f''(1) = 1 and ''f''(''ab'') = ''f''(''a'')''f''(''b'') holds ''for all'' positive integers ''a'' and ''b'', even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(''n''): the constant function, defined by 1(''n'') = 1 (completely multiplicative) * Id(''n''): identity function, defined by Id(''n'') = ''n'' (completely multiplicative) * Id''k''(''n''): the power functions, defined by Id''k''(''n'') = ''n''''k'' for any complex number ''k'' (completely multiplicative). As special cases we have ** Id0(''n'') = 1(''n'') and ** Id1(''n'') = Id(''n''). * ''ε''(''n''): the function defined by ''ε''(''n'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]