Unique Prime
   HOME
*





Unique Prime
The reciprocals of prime numbers have been of interest to mathematicians for various reasons. They do not have a finite sum, as Leonhard Euler proved in 1737. Like all rational numbers, the reciprocals of primes have repeating decimal representations. In his later years, George Salmon (1819–1904) concerned himself with the repeating periods of these decimal representations of reciprocals of primes. Contemporaneously, William Shanks (1812–1882) calculated numerous reciprocals of primes and their repeating periods, and published two papers "On Periods in the Reciprocals of Primes" in 1873 and 1874. In 1874 he also published a table of primes, and the periods of their reciprocals, up to 20,000 (with help from and "communicated by the Rev. George Salmon"), and pointed out the errors in previous tables by three other authors. Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. For a prime , t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divergence Of The Sum Of The Reciprocals Of The Primes
The sum of the reciprocals of all prime numbers diverges; that is: \sum_\frac1p = \frac12 + \frac13 + \frac15 + \frac17 + \frac1 + \frac1 + \frac1 + \cdots = \infty This was proved by Leonhard Euler in 1737, and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series). There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that \sum_\frac1p \ge \log \log (n+1) - \log\frac6 for all natural numbers . The double natural logarithm () indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant. The harmonic series First, we describe how Euler originally discovered the result. He was considering the harmonic series \sum_^\infty \frac = 1 + \frac + \frac + \frac + \cdots = \infty He had already used the following "product formula" to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of mathematics such as analytic number theory, complex analysis, and infinitesimal calculus. He introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy and music theory. Euler is held to be one of the greatest mathematicians in history and the greatest of the 18th century. A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is the master of us all." Carl Friedrich Gauss remarked: "The study of Euler's works will remain the best school for the different fields of mathematics, and nothing else can replace it." Euler i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Numbers
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncount ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Repeating Decimal
A repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating (i.e. all except finitely many digits are zero). For example, the decimal representation of becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is , whose decimal becomes periodic at the ''second'' digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... At present, there is no single universally accepted notation or phrasing for repeating decimals. The infinitely repeated digit sequence is called the repetend or reptend. If the repetend is a zero, this decimal representation is called a terminating decimal rather than a repeating decimal, since the zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

George Salmon
George Salmon FBA FRS FRSE (25 September 1819 – 22 January 1904) was a distinguished and influential Irish mathematician and Anglican theologian. After working in algebraic geometry for two decades, Salmon devoted the last forty years of his life to theology. His entire career was spent at Trinity College Dublin. Personal life Salmon was born in Dublin, to Michael Salmon and Helen Weekes (the daughter of the Reverend Edward Weekes), but he spent his boyhood in Cork City, where his father Michael was a linen merchant. He attended Hamblin and Porter's School there before starting at Trinity College in 1833. In 1837 he won a scholarship and graduated from Trinity in 1839 with first-class honours in mathematics. In 1841 at the age of 21, he attained a paid fellowship and teaching position in mathematics at Trinity. In 1845 he was additionally appointed to a position in theology at the university, after having been ordained a deacon in 1844 and a priest in the Church of Irelan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

William Shanks
William Shanks (25 January 1812 – June 1882) was an English amateur mathematician. He is famous for his calculation of '' '' (pi) to 707 places in 1873, which was correct up to the first 527 places. The error was discovered in 1944 by D. F. Ferguson (using a mechanical desk calculator). Nevertheless, Shanks's approximation was the longest expansion of until the advent of the digital electronic computer in the 1940s. Biography Shanks was born in 1812 in Corsenside. He may have been a student of William Rutherford as a young boy in the 1820s, and he dedicated a book on published in 1853 to Rutherford. After his marriage in 1846, Shanks earned his living by owning a boarding school at Houghton-le-Spring, which left him enough time to spend on his hobby of calculating mathematical constants. In addition to calculating , Shanks also calculated '' e'' and the Euler–Mascheroni constant γ to many decimal places. He published a table of primes (and the periods of their rec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


James Whitbread Lee Glaisher
James Whitbread Lee Glaisher FRS FRSE FRAS (5 November 1848, Lewisham – 7 December 1928, Cambridge), son of James Glaisher and Cecilia Glaisher, was a prolific English mathematician and astronomer. His large collection of (mostly) English ceramics was mostly left to the Fitzwilliam Museum in Cambridge. Life He was born in Lewisham in Kent on 5 November 1848 the son of the eminent astronomer James Glaisher and his wife, Cecilia Louisa Belville. His mother was a noted photographer. He was educated at St Paul's School from 1858. He became somewhat of a school celebrity in 1861 when he made two hot-air balloon ascents with his father to study the stratosphere. He won a Campden Exhibition Scholarship allowing him to study at Trinity College, Cambridge, where he was second wrangler in 1871 and was made a Fellow of the college. Influential in his time on teaching at the University of Cambridge, he is now remembered mostly for work in number theory that anticipated later in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Repeating Decimal
A repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating (i.e. all except finitely many digits are zero). For example, the decimal representation of becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is , whose decimal becomes periodic at the ''second'' digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... At present, there is no single universally accepted notation or phrasing for repeating decimals. The infinitely repeated digit sequence is called the repetend or reptend. If the repetend is a zero, this decimal representation is called a terminating decimal rather than a repeating decimal, since the zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reciprocal (mathematics)
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1). The term ''reciprocal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Pages
The PrimePages is a website about prime numbers maintained by Chris Caldwell at the University of Tennessee at Martin. The site maintains the list of the "5,000 largest known primes", selected smaller primes of special forms, and many "top twenty" lists for primes of various forms. , the 5,000th prime has around 412,000 digits.. Retrieved on 2018-02-12. The PrimePages has articles on primes and primality test A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whet ...ing. It includes "The Prime Glossary" with articles on hundreds of glosses related to primes, and "Prime Curios!" with thousands of curios about specific numbers. The database started as a list of titanic primes (primes with at least 1000 decimal digits) by Samuel Yates. In subsequent years, the whole top-5,000 has consisted o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probable Prime
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare. Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer ''n'', choose some integer ''a'' that is not a multiple of ''n''; (typically, we choose ''a'' in the range ). Calculate . If the result is not 1, then ''n'' is composite. If the result is 1, then ''n'' is likely to be prime; ''n'' is then called a probable prime to base ''a''. A weak probable prime to base ''a'' is an integer that is a probable prime to base ''a'', but which is not a strong probable prime to base ''a'' (see below). For a fixed base ''a'', it is unusual fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cyclotomic Polynomial
In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th primitive roots of unity e^ , where ''k'' runs over the positive integers not greater than ''n'' and coprime to ''n'' (and ''i'' is the imaginary unit). In other words, the ''n''th cyclotomic polynomial is equal to : \Phi_n(x) = \prod_\stackrel \left(x-e^\right). It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive ''n''th-root of unity ( e^ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is :\prod_\Phi_d(x) = x^n - 1, showing that is a root of x^n - 1 if and only if it is a ''d''th primitive root of unity for some ''d'' that divides ''n''. Examples If ''n'' is a pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]