Uniform Convergence In Probability
   HOME





Uniform Convergence In Probability
Uniform convergence in probability is a form of convergence in probability in statistical asymptotic theory and probability theory. It means that, under certain conditions, the ''empirical frequencies'' of all events in a certain event-family converge to their ''theoretical probabilities''. Uniform convergence in probability has applications to statistics as well as machine learning as part of statistical learning theory. The law of large numbers says that, for each ''single'' event A, its empirical frequency in a sequence of independent trials converges (with high probability) to its theoretical probability. In many application however, the need arises to judge simultaneously the probabilities of events of an entire class S from one and the same sample. Moreover it, is required that the relative frequency of the events converge to the probability uniformly over the entire class of events S The Uniform Convergence Theorem gives a sufficient condition for this convergence to hold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence In Probability
In probability theory, there exist several different notions of convergence of sequences of random variables, including ''convergence in probability'', ''convergence in distribution'', and ''almost sure convergence''. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution. The concept is important in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that certain properties of a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Growth Function
The growth function, also called the shatter coefficient or the shattering number, measures the richness of a set family or class of functions. It is especially used in the context of statistical learning theory, where it is used to study properties of statistical learning methods. The term 'growth function' was coined by Vapnik and Chervonenkis in their 1968 paper, where they also proved many of its properties. It is a basic concept in machine learning., especially Section 3.2 Definitions Set-family definition Let H be a set family (a set of sets) and C a set. Their ''intersection'' is defined as the following set-family: : H\cap C := \ The ''intersection-size'' (also called the ''index'') of H with respect to C is , H\cap C, . If a set C_m has m elements then the index is at most 2^m. If the index is exactly 2''m'' then the set C is said to be shattered by H, because H\cap C contains all the subsets of C, i.e.: : , H\cap C, =2^, The growth function measures the size o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hoeffding's Inequality
In probability theory, Hoeffding's inequality provides an upper bound on the probability that the sum of bounded independent random variables deviates from its expected value by more than a certain amount. Hoeffding's inequality was proven by Wassily Hoeffding in 1963. Hoeffding's inequality is a special case of the Azuma–Hoeffding inequality and McDiarmid's inequality. It is similar to the Chernoff bound, but tends to be less sharp, in particular when the variance of the random variables is small. It is similar to, but incomparable with, one of Bernstein's inequalities. Statement Let be independent random variables such that a_i \leq X_i \leq b_i almost surely. Consider the sum of these random variables, :S_n = X_1 + \cdots + X_n. Then Hoeffding's theorem states that, for all , :\begin \operatorname \left(S_n - \mathrm\left _n \right\geq t \right) &\leq \exp \left(-\frac \right) \\ \operatorname \left(\left , S_n - \mathrm\left _n \right\right , \geq t \right) &\leq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chebyshev's Inequality
In probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) provides an upper bound on the probability of deviation of a random variable (with finite variance) from its mean. More specifically, the probability that a random variable deviates from its mean by more than k\sigma is at most 1/k^2, where k is any positive constant and \sigma is the standard deviation (the square root of the variance). The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers. Its practical usage is similar to the 68–95–99.7 rule, which applies only to normal distributions. Chebyshev's inequality is more general, stating that a minimum of just 75% of values must lie within two standard deviations of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VC Dimension
VC may refer to: Military decorations * Victoria Cross, a military decoration awarded by the United Kingdom and other Commonwealth nations ** Victoria Cross for Australia ** Victoria Cross (Canada) ** Victoria Cross for New Zealand * Victorious Cross, Idi Amin's self-bestowed military decoration Organisations * Ocean Airlines (IATA airline designator 2003-2008), Italian cargo airline * Voyageur Airways (IATA airline designator since 1968), Canadian charter airline * Visual Communications, an Asian-Pacific-American media arts organization in Los Angeles, California * Viet Cong, a political and military organization during the Vietnam War (1959–1975) Education * Vanier College, Canada * Vassar College, US * Velez College, Philippines * Virginia College, US * Ventura College, US Places * Saint Vincent and the Grenadines (ISO country code) * Sri Lanka (ICAO airport prefix code) * Watsonian vice-counties, subdivisions of Great Britain or Ireland * Ventura County, in S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sauer–Shelah Lemma
In combinatorial mathematics and extremal set theory, the Sauer–Shelah lemma states that every family of sets with small VC dimension consists of a small number of sets. It is named after Norbert Sauer and Saharon Shelah, who published it independently of each other in 1972. The same result was also published slightly earlier and again independently, by Vladimir Vapnik and Alexey Chervonenkis, after whom the VC dimension is named. In his paper containing the lemma, Shelah gives credit also to Micha Perles, and for this reason the lemma has also been called the Perles–Sauer–Shelah lemma and the Sauer–Shelah–Perles lemma. Buzaglo et al. call this lemma "one of the most fundamental results on VC-dimension", and it has applications in many areas. Sauer's motivation was in the combinatorics of set systems, while Shelah's was in model theory and that of Vapnik and Chervonenkis was in statistics. It has also been applied in discrete geometry and graph theory. Definitions an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Concept Class
In computational learning theory in mathematics, a concept over a domain ''X'' is a total Boolean function over ''X''. A concept class is a class of concepts. Concept classes are a subject of computational learning theory. Concept class terminology frequently appears in model theory associated with probably approximately correct (PAC) learning.Chase, H., & Freitag, J. (2018). ''Model Theory and Machine Learning''. arXiv preprint arXiv:1801.06566
In this setting, if one takes a set ''Y'' as a set of (classifier output) labels, and ''X'' is a set of examples, the map c: X\to Y, i.e. from examples to classifier labels (where Y = \ and where ''c'' is a subset of ''X''), ''c'' is then said to be a ''concept''. A ''concept class'' C is then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shattering Number
The growth function, also called the shatter coefficient or the shattering number, measures the richness of a set family or class of functions. It is especially used in the context of statistical learning theory, where it is used to study properties of statistical learning methods. The term 'growth function' was coined by Vapnik and Chervonenkis in their 1968 paper, where they also proved many of its properties. It is a basic concept in machine learning., especially Section 3.2 Definitions Set-family definition Let H be a set family (a set of sets) and C a set. Their ''intersection'' is defined as the following set-family: : H\cap C := \ The ''intersection-size'' (also called the ''index'') of H with respect to C is , H\cap C, . If a set C_m has m elements then the index is at most 2^m. If the index is exactly 2''m'' then the set C is said to be shattered by H, because H\cap C contains all the subsets of C, i.e.: : , H\cap C, =2^, The growth function measures the size o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vapnik–Chervonenkis Dimension
In Vapnik–Chervonenkis theory, the Vapnik–Chervonenkis (VC) dimension is a measure of the size (capacity, complexity, expressive power, richness, or flexibility) of a class of sets. The notion can be extended to classes of binary functions. It is defined as the cardinality of the largest set of points that the algorithm can shatter, which means the algorithm can always learn a perfect classifier for any labeling of at least one configuration of those data points. It was originally defined by Vladimir Vapnik and Alexey Chervonenkis. Informally, the capacity of a classification model is related to how complicated it can be. For example, consider the thresholding of a high- degree polynomial: if the polynomial evaluates above zero, that point is classified as positive, otherwise as negative. A high-degree polynomial can be wiggly, so that it can fit a given set of training points well. But one can expect that the classifier will make errors on other points, because it is too wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Theory (statistics)
In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of . In practice, a limit evaluation is considered to be approximately valid for large finite sample sizes too.Höpfner, R. (2014), Asymptotic Statistics, Walter de Gruyter. 286 pag. , Overview Most statistical problems begin with a dataset of size . The asymptotic theory proceeds by assuming that it is possible (in principle) to keep collecting additional data, thus that the sample size grows infinitely, i.e. . Under the assumption, many results can be obtained that are unavailable for samples of finite size. An example is the weak law of large numbers. The law states that for a sequence of independent and identically distributed (IID) random variables , if one value is drawn from each ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]