Unicoherent Space
   HOME
*





Unicoherent Space
In mathematics, a unicoherent space is a topological space X that is connected and in which the following property holds: For any closed, connected A, B \subset X with X=A \cup B, the intersection A \cap B is connected. For example, any closed interval on the real line is unicoherent, but a circle is not. If a unicoherent space is more strongly hereditarily unicoherent (meaning that every subcontinuum is unicoherent) and arcwise connected, then it is called a dendroid. If in addition it is locally connected then it is called a dendrite. The Phragmen–Brouwer theorem In topology, the Phragmén–Brouwer theorem, introduced by Lars Edvard Phragmén and Luitzen Egbertus Jan Brouwer, states that if ''X'' is a normal connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong ... states that, for locally connected spaces, unicoherence is equivalent to a separation property of the closed sets of the space. References * External links * Ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is '' locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dendroid (topology)
In mathematics, a dendroid is a type of topological space, satisfying the properties that it is hereditarily unicoherent (meaning that every subcontinuum of ''X'' is unicoherent), arcwise connected, and forms a continuum. The term dendroid was introduced by Bronisław Knaster lecturing at the University of Wrocław,. although these spaces were studied earlier by Karol Borsuk and others.. proved that dendroids have the fixed-point property: Every continuous function from a dendroid to itself has a fixed point. proved that every dendroid is ''tree-like'', meaning that it has arbitrarily fine open covers whose nerve is a tree. The more general question of whether every tree-like continuum has the fixed-point property, posed by , was solved in the negative by David P. Bellamy, who gave an example of a tree-like continuum without the fixed-point property. In Knaster's original publication on dendroids, in 1961, he posed the problem of characterizing the dendroids which can be embed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Connected Space
In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Background Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space. However, whereas the structure of ''compact'' subsets of Euclidean space was understood quite early on via the Heine–Borel theorem, ''connected'' subsets of \R^n (for ''n'' > 1) proved to be much more complicated. Indeed, while any compact Hausdorff space is locally compact, a connected space—and even a connected subset of the Euclidean plane—need not be locally connected (see below). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dendrite (mathematics)
In mathematics, a dendrite is a certain type of topological space that may be characterized either as a locally connected dendroid or equivalently as a locally connected continuum that contains no simple closed curves. Importance Dendrites may be used to model certain types of Julia set. For example, if 0 is pre-periodic, but not periodic, under the function f(z) = z^2 + c, then the Julia set of f is a dendrite: connected, without interior.. References See also *Misiurewicz point *Real tree, a related concept defined using metric spaces instead of topological spaces *Dendroid (topology) and unicoherent space In mathematics, a unicoherent space is a topological space X that is connected and in which the following property holds: For any closed, connected A, B \subset X with X=A \cup B, the intersection A \cap B is connected. For example, any closed i ..., two more general types of tree-like topological space Continuum theory Trees (topology) {{Topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Phragmen–Brouwer Theorem
In topology, the Phragmén–Brouwer theorem, introduced by Lars Edvard Phragmén and Luitzen Egbertus Jan Brouwer, states that if ''X'' is a normal connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ... locally connected topological space, then the following two properties are equivalent: *If ''A'' and ''B'' are disjoint closed subsets whose union separates ''X'', then either ''A'' or ''B'' separates ''X''. *''X'' is unicoherent, meaning that if ''X'' is the union of two closed connected subsets, then their intersection is connected or empty. The theorem remains true with the weaker condition that ''A'' and ''B'' be separated. References * * * * García-Maynez, A. and Illanes, A. ‘A survey of multicoherence’, An. Inst. Autonoma Mexico 29 (1989) 17–67. * * Wilder, R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]