Ultraviolet Completion
   HOME
*





Ultraviolet Completion
In theoretical physics, ultraviolet completion, or UV completion, of a quantum field theory is the passing from a lower energy quantum field theory to a more general quantum field theory above a threshold value known as the cutoff. In particular, the more general high energy theory must be well-defined at arbitrarily high energies. The word "ultraviolet" in this so-called "ultraviolet regime" is only figurative, and refers to energies much higher than ultraviolet light ''per se''. Rather, by analogy to the relationship between ultraviolet and visible light, it refers to energies higher than (and wavelengths shorter than) those "visible" to laboratory experiment. The ultraviolet theory must be renormalizable; it can have no Landau poles; and most typically, it enjoys asymptotic freedom in the case that it is a quantum field theory (or at least has a nontrivial fixed point). However, it may also be a background of string theory whose ultraviolet behavior is at least as good as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cutoff (physics)
In theoretical physics, cutoff (AE: cutoff, BE: cut-off) is an arbitrary maximal or minimal value of energy, momentum, or length, used in order that objects with larger or smaller values than these physical quantities are ignored in some calculation. It is usually represented within a particular energy or length scale, such as Planck units. When used in this context, the traditional terms "infrared" and "ultraviolet" are not literal references to specific regions of the spectrum, but rather refer by analogy to portions of a calculation for low energies (infrared) and high energies (ultraviolet), respectively. Infrared and ultraviolet cutoff An infrared cutoff (long-distance cutoff) is the minimal value of energy – or, equivalently, the maximal wavelength (usually a very large distance) – that will be taken into account in a calculation, typically an integral. At the opposite end of the energy scale, an ultraviolet cutoff is the maximal allowed energy or the shortest allow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultraviolet Light
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Consequently, the chemical and biological effects of UV are greater than simple heating effects, and many practical applications of UV radiation derive from its interactions with organic molecules. Short-wave ultraviolet light damages DNA and sterilizes surfaces with which it comes into contact. For h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Renormalizable
Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similarity, self-similar geometric structures, that are used to treat infinity, infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in One-loop Feynman diagram, loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian (field theory), Lagrangian. For example, an electron theory may begin by postulating an electron with an initial mass and charge. In quantum field theory a cloud of virtual particles, such as photons, positrons, and others surrounds and interacts with the initial electron. Accounting for the interactions of the surrounding particles (e.g. collisions at different energies) shows that the electron-system behaves as if it had ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Landau Pole
In physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues. The fact that couplings depend on the momentum (or length) scale is the central idea behind the renormalization group. Landau poles appear in theories that are not asymptotically free, such as quantum electrodynamics (QED) or theory—a scalar field with a quartic interaction—such as may describe the Higgs boson. In these theories, the renormalized coupling constant grows with energy. A Landau pole appears when the coupling becomes infinite at a finite energy scale. In a theory purporting to be complete, this could be considered a mathematical inconsistency. A possible solution is that the renormalized charge could go to zero as the cut-off is removed, meaning that the charge is completely screen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Asymptotic Freedom
In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. Asymptotic freedom is a feature of quantum chromodynamics (QCD), the quantum field theory of the strong interaction between quarks and gluons, the fundamental constituents of nuclear matter. Quarks interact weakly at high energies, allowing perturbative calculations. At low energies, the interaction becomes strong, leading to the confinement of quarks and gluons within composite hadrons. The asymptotic freedom of QCD was discovered in 1973 by David Gross and Frank Wilczek, and independently by David Politzer in the same year. For this work all three shared the 2004 Nobel Prize in Physics. Discovery Asymptotic freedom in QCD was discovered in 1973 by David Gross and Frank Wilczek, and independently by David Politzer in the same year. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UV Fixed Point
In a quantum field theory, one may calculate an effective or running coupling constant that defines the coupling of the theory measured at a given momentum scale. One example of such a coupling constant is the electric charge. In approximate calculations in several quantum field theories, notably quantum electrodynamics and theories of the Higgs particle, the running coupling appears to become infinite at a finite momentum scale. This is sometimes called the '' Landau pole problem''. It is not known whether the appearance of these inconsistencies is an artifact of the approximation, or a real fundamental problem in the theory. However, the problem can be avoided if an ultraviolet or UV fixed point appears in the theory. A quantum field theory has a UV fixed point if its renormalization group flow approaches a fixed point in the ultraviolet (i.e. short length scale/large energy) limit. This is related to zeroes of the beta-function appearing in the Callan–Symanzik equation. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and conde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cosmological
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher Christian Wolff, in ''Cosmologia Generalis''. Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation myths and eschatology. In the science of astronomy it is concerned with the study of the chronology of the universe. Physical cosmology is the study of the observable universe's origin, its large-scale structures and dynamics, and the ultimate fate of the universe, including the laws of science that govern these areas. It is investigated by scientists, such as astronomers and physicists, as well as philosophers, such as metaphysicians, philosophers of physics, and philosophers of space and time. Because of this shared scope with philosophy, theories in p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ultraviolet Divergence
In physics, an ultraviolet divergence or UV divergence is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with unbounded energy, or, equivalently, because of physical phenomena at infinitesimal distances. Overview Since an infinite result is unphysical, ultraviolet divergences often require special treatment to remove unphysical effects inherent in the perturbative formalisms. In particular, UV divergences can often be removed by regularization and renormalization. Successful resolution of an ultraviolet divergence is known as ultraviolet completion. If they cannot be removed, they imply that the theory is not perturbatively well-defined at very short distances. The name comes from the earliest example of such a divergence, the "ultraviolet catastrophe" first encountered in understanding blackbody radiation. According to classical physics at the end of the nineteenth century, the quantity of radiation in the form of l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermi's Interaction
In particle physics, Fermi's interaction (also the Fermi theory of beta decay or the Fermi four-fermion interaction) is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another (at one vertex of the associated Feynman diagram). This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino (later determined to be an antineutrino) and a proton. Fermi first introduced this coupling in his description of beta decay in 1933. The Fermi interaction was the precursor to the theory for the weak interaction where the interaction between the proton–neutron and electron–antineutrino is mediated by a virtual W− boson, of which the Fermi theory is the low-energy effective field theory. History of initial rejection and later publication Fermi first submitted his "tentative" theory of beta decay to the prestigious science journal ''Nature'', which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]