Typeclass
   HOME
*





Typeclass
In computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T and a type variable a, and means that a can only be instantiated to a type whose members support the overloaded operations associated with T. Type classes were first implemented in the Haskell programming language after first being proposed by Philip Wadler and Stephen Blott as an extension to "eqtypes" in Standard ML, and were originally conceived as a way of implementing overloaded arithmetic and equality operators in a principled fashion. In contrast with the "eqtypes" of Standard ML, overloading the equality operator through the use of type classes in Haskell does not require extensive modification of the compiler frontend or the underlying type system. Overview Type classes are defined by specifying a set of function or constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monad (functional Programming)
In functional programming, a monad is a software design pattern with a structure that combines program fragments (Function (computer programming), functions) and wraps their return values in a Type system, type with additional computation. In addition to defining a wrapping monadic type, monads define two Operator (computer programming), operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type (these are known as monadic functions). General-purpose languages use monads to reduce boilerplate code needed for common operations (such as dealing with undefined values or fallible functions, or encapsulating bookkeeping code). Functional languages use monads to turn complicated sequences of functions into succinct pipelines that abstract away control flow, and side-effect (computer science), side-effects. Both the concept of a monad and the term originally come from category theory, where a monad is defined as a Func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monad (functional Programming)
In functional programming, a monad is a software design pattern with a structure that combines program fragments (Function (computer programming), functions) and wraps their return values in a Type system, type with additional computation. In addition to defining a wrapping monadic type, monads define two Operator (computer programming), operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type (these are known as monadic functions). General-purpose languages use monads to reduce boilerplate code needed for common operations (such as dealing with undefined values or fallible functions, or encapsulating bookkeeping code). Functional languages use monads to turn complicated sequences of functions into succinct pipelines that abstract away control flow, and side-effect (computer science), side-effects. Both the concept of a monad and the term originally come from category theory, where a monad is defined as a Func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glasgow Haskell Compiler
The Glasgow Haskell Compiler (GHC) is an open-source native code compiler for the functional programming language Haskell. It provides a cross-platform environment for the writing and testing of Haskell code and it supports numerous extensions, libraries, and optimisations that streamline the process of generating and executing code. GHC is the most commonly used Haskell compiler. The lead developers are Simon Peyton Jones and Simon Marlow. History GHC originally started in 1989 as a prototype, written in LML (Lazy ML) by Kevin Hammond at the University of Glasgow. Later that year, the prototype was completely rewritten in Haskell, except for its parser, by Cordelia Hall, Will Partain, and Simon Peyton Jones. Its first beta release was on 1 April 1991 and subsequent releases added a strictness analyzer as well as language extensions such as monadic I/O, mutable arrays, unboxed data types, concurrent and parallel programming models (such as software transactional memory and dat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kind (type Theory)
In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted * and called "type", which is the kind of any data type which does not need any type parameters. A kind is sometimes confusingly described as the "type of a (data) type", but it is actually more of an arity specifier. Syntactically, it is natural to consider polymorphic types to be type constructors, thus non-polymorphic types to be nullary type constructors. But all nullary constructors, thus all monomorphic types, have the same, simplest kind; namely *. Since higher-order type operators are uncommon in programming languages, in most programming practice, kinds are used to distinguish between data types and the types of constructors which are used to implement parametric polymorphism. Kinds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Set (abstract Data Type)
In computer science, a set is an abstract data type that can store unique values, without any particular order. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set. Some set data structures are designed for static or frozen sets that do not change after they are constructed. Static sets allow only query operations on their elements — such as checking whether a given value is in the set, or enumerating the values in some arbitrary order. Other variants, called dynamic or mutable sets, allow also the insertion and deletion of elements from the set. A multiset is a special kind of set in which an element can appear multiple times in the set. Type theory In type theory, sets are generally identified with their indicator function (characteristic function): accordingly, a set of values of type A may be denoted by 2^ o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Inference
Type inference refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics. Nontechnical explanation Types in a most general view can be associated to a designated use suggesting and restricting the activities possible for an object of that type. Many nouns in language specify such uses. For instance, the word leash indicates a different use than the word line. Calling something a table indicates another designation than calling it firewood, though it might be materially the same thing. While their material properties make things usable for some purposes, they are also subject of particular designations. This is especially the case in abstract fields, namely mathematics and computer science, where the material is finally only bits or formulas. To exclude unwanted, but materially possible uses, the concept of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simon Peyton-Jones
Simon Peyton Jones (born 18 January 1958) is a British computer scientist who researches the implementation and applications of functional programming languages, particularly lazy functional programming. Education Peyton Jones graduated from Trinity College, Cambridge with a BSc in Electrical Sciences in 1979 and went on to complete the Cambridge Diploma in Computer Science in 1980. He never did a PhD. Career and research Peyton Jones worked in industry for two years before serving as a lecturer at University College London and, from 1990 to 1998, as a professor at the University of Glasgow. From 1998 to 2021 he worked as a researcher at Microsoft Research in Cambridge, England. Since 2021 he has worked at Epic Games as an engineering fellow. He is a major contributor to the design of the Haskell programming language, and a lead developer of the Glasgow Haskell Compiler (GHC). He is also co-creator of the programming language, designed for intermediate program representati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Functional Dependency
In relational database theory, a functional dependency is a constraint between two sets of attributes in a relation from a database. In other words, a functional dependency is a constraint between two attributes in a relation. Given a relation ''R'' and sets of attributes X,Y \subseteq R, ''X'' is said to functionally determine ''Y'' (written ''X'' → ''Y'') if and only if each ''X'' value in ''R'' is associated with precisely one ''Y'' value in ''R''; ''R'' is then said to ''satisfy'' the functional dependency ''X'' → ''Y''. Equivalently, the projection \Pi_R is a function, i.e. ''Y'' is a function of ''X''. In simple words, if the values for the ''X'' attributes are known (say they are ''x''), then the values for the ''Y'' attributes corresponding to ''x'' can be determined by looking them up in ''any'' tuple of ''R'' containing ''x''. Customarily ''X'' is called the ''determinant'' set and ''Y'' the ''dependent'' set. A functional dependency FD: ''X'' → ''Y'' is called ''tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scala (programming Language)
Scala ( ) is a strong statically typed general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable. On the JVM Scala provides language interoperability with Java so that libraries written in either language may be referenced directly in Scala or Java code. Like Java, Scala is object-oriented, and uses a syntax termed '' curly-brace'' which is similar to the language C. Since Scala 3, there is also an option to use the off-side rule (indenting) to structure blocks, and its use is advised. Martin Odersky has said that this turned out to be the most productive change introduced in Scala 3. Unlike Java, Scala has many features of functional prog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Agda (theorem Prover)
Agda is a dependently typed functional programming language originally developed by Ulf Norell at Chalmers University of Technology with implementation described in his PhD thesis. The original Agda system was developed at Chalmers by Catarina Coquand in 1999. The current version, originally known as Agda 2, is a full rewrite, which should be considered a new language that shares a name and tradition. Agda is also a proof assistant based on the propositions-as-types paradigm, but unlike Coq, has no separate tactics language, and proofs are written in a functional programming style. The language has ordinary programming constructs such as data types, pattern matching, records, let expressions and modules, and a Haskell-like syntax. The system has Emacs and Atom interfaces but can also be run in batch mode from the command line. Agda is based on Zhaohui Luo's unified theory of dependent types (UTT), a type theory similar to Martin-Löf type theory. Agda is named after the Swedis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]