Type Inhabitation Problem
   HOME
*





Type Inhabitation Problem
In type theory, a branch of mathematical logic, in a given typed calculus, the type inhabitation problem for this calculus is the following problem: given a type \tau and a typing environment \Gamma, does there exist a \lambda-term M such that \Gamma \vdash M : \tau? With an empty type environment, such an M is said to be an inhabitant of \tau. Relationship to logic In the case of simply typed lambda calculus, a type has an inhabitant if and only if its corresponding proposition is a tautology of minimal implicative logic. Similarly, a System F type has an inhabitant if and only if its corresponding proposition is a tautology of intuitionistic second-order logic. Girard's paradox shows that type inhabitation is strongly related to the consistency of a type system with Curry–Howard correspondence. To be sound, such a system must have uninhabited types. Formal properties For most typed calculi, the type inhabitation problem is very hard. Richard Statman proved that for sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Theory
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid a paradox in a mathematical foundation based on naive set theory and formal logic. Russell's paradox, which was discovered by Bertrand Russell, existed because a set could be defined using "all possible sets", which included itself. Between 1902 and 1908, Bertrand Russell proposed various "theories of type" to fix the problem. By 1908 Russell arrived at a "ramified" theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Typing Environment
In type theory a typing environment (or typing context) represents the association between variable names and data types. More formally an environment \Gamma is a set or ordered list of pairs \langle x,\tau \rangle, usually written as x:\tau, where x is a variable and \tau its type. The judgement : \Gamma \vdash e:\tau is read as "e has type \tau in context \Gamma ". In statically typed programming languages these environments are used and maintained by typing rules to type check a given program or expression. See also * Type system In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer progr ... References Data types Program analysis Type theory {{type-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simply Typed Lambda Calculus
The simply typed lambda calculus (\lambda^\to), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor (\to) that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus. The term ''simple type'' is also used to refer extensions of the simply typed lambda calculus such as products, coproducts or natural numbers ( System T) or even full recursion (like PCF). In contrast, systems which introduce polymorphic types (like System F) or dependent types (like the Logical Framework) are not considered ''simply typed''. The simple types, except for full recursion, are still considered ''simple'' because the Church encodings of such structures can be done using only \to and suitable type variables, while polymorphism and dependency cannot. Syntax In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE