Total Variation Diminishing
   HOME
*



picture info

Total Variation Diminishing
In numerical methods, total variation diminishing (TVD) is a property of certain discretization schemes used to solve hyperbolic partial differential equations. The most notable application of this method is in computational fluid dynamics. The concept of TVD was introduced by Ami Harten. Model equation In systems described by partial differential equations, such as the following hyperbolic advection equation, :\frac + a\frac = 0, the total variation (TV) is given by :TV(u(\cdot,t)) = \int \left, \frac \ \mathrmx , and the total variation for the discrete case is, :TV(u^n) = TV(u(\cdot,t^n)) = \sum_j \left, u_^n - u_j^n \ . where u_^n=u(x_,t^n). A numerical method is said to be total variation diminishing (TVD) if, :TV \left( u^\right) \leq TV \left( u^\right) . Characteristics A numerical scheme is said to be monotonicity preserving if the following properties are maintained: *If u^ is monotonically increasing (or decreasing) in space, then so is u^. proved the follow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Method
In numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Mathematical definition Let F(x,y)=0 be a well-posed problem, i.e. F:X \times Y \rightarrow \mathbb is a real or complex functional relationship, defined on the cross-product of an input data set X and an output data set Y, such that exists a locally lipschitz function g:X \rightarrow Y called resolvent, which has the property that for every root (x,y) of F, y=g(x). We define numerical method for the approximation of F(x,y)=0, the sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ... of problems : \left \_ = \left \_, with F_n:X_n \times ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuity Equation
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations. Continuity equations are a stronger, local form of conservation laws. For example, a weak version of the law of conservation of energy states that energy can neither be created nor destroyed—i.e., the total amount of energy in the universe is fixed. This statement does not rule out the possibility that a quantity of energy could disappear from one point while simultaneously appearing at another point. A stronger statement is that energy is ''locally'' conserved: energy can neither be created nor destroyed, ''nor'' can it " t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dale A
Dale or dales may refer to: Locations * Dale (landform), an open valley * Dale (place name element) Geography ;Australia *The Dales (Christmas Island), in the Indian Ocean ;Canada *Dale, Ontario ;Ethiopia *Dale (woreda), district ;Norway *Dale, Fjaler, the administrative centre of Fjaler municipality, Vestland county *Dale, Sel, a village in Sel municipality in Innlandet county * Dale, Vaksdal, the administrative centre of Vaksdal municipality, Vestland county * Dale, Vaksdal, the administrative bop on the head * Dale Church (Fjaler), a church in Fjaler municipality, Vestland county *Dale Church (Luster), a church in Luster municipality, Vestland county *Dale Church (Vaksdal), a church in Vaksdal municipality, Vestland county *Dale Church (also known as Norddal Church), a church in Fjord municipality, Møre og Romsdal county ;Poland *Dale, Lesser Poland Voivodeship (south Poland) ;Sweden *The Dales, English exonym for Dalarna province ;United Kingdom *Dale, Cumbria, a hamlet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Variation
In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function ''f'', defined on an interval 'a'', ''b''⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation ''x'' ↦ ''f''(''x''), for ''x'' ∈ 'a'', ''b'' Functions whose total variation is finite are called functions of bounded variation. Historical note The concept of total variation for functions of one real variable was first introduced by Camille Jordan in the paper . He used the new concept in order to prove a convergence theorem for Fourier series of discontinuous periodic functions whose variation is bounded. The extension of the concept to functions of more than one variable however is not simple for various reasons. Definitions Total variation for functions of one real variable Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sergei K
Sergius is a male given name of Ancient Roman origin after the name of the Latin ''gens'' Sergia or Sergii of regal and republican ages. It is a common Christian name, in honor of Saint Sergius, or in Russia, of Saint Sergius of Radonezh, and has been the name of four popes. It has given rise to numerous variants, present today mainly in the Romance (Serge, Sergio, Sergi) and Slavic languages (Serhii, Sergey, Serguei). It is not common in English, although the Anglo-French name Sergeant is possibly related to it. Etymology The name originates from the Roman ''nomen'' (patrician family name) ''Sergius'', after the name of the Roman ''gens'' of Latin origins Sergia or Sergii from Alba Longa, Old Latium, counted by Theodor Mommsen as one of the oldest Roman families, one of the original 100 ''gentes originarie''. It has been speculated to derive from a more ancient Etruscan name but the etymology of the nomen Sergius is problematic. Chase hesitantly suggests a connection with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




MUSCL Scheme
In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients. MUSCL stands for ''Monotonic Upstream-centered Scheme for Conservation Laws'' (van Leer, 1979), and the term was introduced in a seminal paper by Bram van Leer (van Leer, 1979). In this paper he constructed the first ''high-order'', ''total variation diminishing'' (TVD) scheme where he obtained second order spatial accuracy. The idea is to replace the piecewise constant approximation of Godunov's scheme by reconstructed states, derived from cell-averaged states obtained from the previous time-step. For each cell, slope limited, reconstructed left and right states are obtained and used to calculate fluxes at the cell boundaries (edges). These fluxes can, in turn, be used as input to a ''Riemann solver'', following which the solutions are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


High-resolution Scheme
High-resolution schemes are used in the numerical solution of partial differential equations where high accuracy is required in the presence of shocks or discontinuities. They have the following properties: *Second- or higher-Order of accuracy, order spatial accuracy is obtained in smooth parts of the solution. *Solutions are free from spurious oscillations or wiggles. *High accuracy is obtained around shocks and discontinuities. *The number of mesh points containing the wave is small compared with a first-order scheme with similar accuracy. General methods are often not adequate for accurate resolution of steep gradient phenomena; they usually introduce non-physical effects such as ''smearing'' of the solution or ''spurious oscillations''. Since publication of ''Godunov's order barrier theorem'', which proved that linear methods cannot provide non-oscillatory solutions higher than first order (Godunov 1954, Godunov 1959), these difficulties have attracted much attention and a nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flux Limiters
Flux limiters are used in high resolution schemes – numerical schemes used to solve problems in science and engineering, particularly fluid dynamics, described by partial differential equations (PDEs). They are used in high resolution schemes, such as the MUSCL scheme, to avoid the spurious oscillations (wiggles) that would otherwise occur with high order spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution domain. Use of flux limiters, together with an appropriate high resolution scheme, make the solutions total variation diminishing (TVD). Note that flux limiters are also referred to as slope limiters because they both have the same mathematical form, and both have the effect of limiting the solution gradient near shocks or discontinuities. In general, the term flux limiter is used when the limiter acts on system ''fluxes'', and slope limiter is used when the limiter acts on system ''states'' (like pressure, velocity etc.). How they wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flux Limiter
Flux limiters are used in high resolution schemes – numerical schemes used to solve problems in science and engineering, particularly fluid dynamics, described by partial differential equations (PDEs). They are used in high resolution schemes, such as the MUSCL scheme, to avoid the spurious oscillations (wiggles) that would otherwise occur with high order spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution domain. Use of flux limiters, together with an appropriate high resolution scheme, make the solutions total variation diminishing (TVD). Note that flux limiters are also referred to as slope limiters because they both have the same mathematical form, and both have the effect of limiting the solution gradient near shocks or discontinuities. In general, the term flux limiter is used when the limiter acts on system ''fluxes'', and slope limiter is used when the limiter acts on system ''states'' (like pressure, velocity etc.). How they wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-linear
In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists because most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems. Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function which is not a polynomial of degree one. In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


High-resolution Scheme
High-resolution schemes are used in the numerical solution of partial differential equations where high accuracy is required in the presence of shocks or discontinuities. They have the following properties: *Second- or higher-Order of accuracy, order spatial accuracy is obtained in smooth parts of the solution. *Solutions are free from spurious oscillations or wiggles. *High accuracy is obtained around shocks and discontinuities. *The number of mesh points containing the wave is small compared with a first-order scheme with similar accuracy. General methods are often not adequate for accurate resolution of steep gradient phenomena; they usually introduce non-physical effects such as ''smearing'' of the solution or ''spurious oscillations''. Since publication of ''Godunov's order barrier theorem'', which proved that linear methods cannot provide non-oscillatory solutions higher than first order (Godunov 1954, Godunov 1959), these difficulties have attracted much attention and a nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Godunov's Theorem
In numerical analysis and computational fluid dynamics, Godunov's theorem — also known as Godunov's order barrier theorem — is a mathematical theorem important in the development of the theory of high resolution schemes for the numerical solution of partial differential equations. The theorem states that: :''Linear numerical schemes for solving partial differential equations (PDE's), having the property of not generating new extrema (monotone scheme), can be at most first-order accurate.'' Professor Sergei K. Godunov originally proved the theorem as a Ph.D. student at Moscow State University. It is his most influential work in the area of applied and numerical mathematics and has had a major impact on science and engineering, particularly in the development of methods used in computational fluid dynamics (CFD) and other computational fields. One of his major contributions was to prove the theorem (Godunov, 1954; Godunov, 1959), that bears his name. The theorem We generally fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]