Timelike Multiply Connected
   HOME
*





Timelike Multiply Connected
Suppose a Lorentzian manifold contains a closed timelike curve (CTC). No CTC can be continuously deformed as a CTC (is timelike homotopic) to a point, as that point would not be causally well behaved. Therefore, any Lorentzian manifold containing a CTC is said to be timelike multiply connected. A Lorentzian manifold that does not contain a CTC is said to be timelike simply connected. Any Lorentzian manifold which is timelike multiply connected has a diffeomorphic universal covering space A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete spa ... which is timelike simply connected. For instance, a three-sphere with a Lorentzian metric is timelike multiply connected, (because any compact Lorentzian manifold contains a CTC), but has a diffeomorphic universal covering space which contains no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lorentzian Manifold
In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike. Introduction Manifolds In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the coordinates of the point. An ''n''-dimensional differentiable manifold is a generalisation of ''n''-dimensional Euclidean space. In a manifold it may only be possible to defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Timelike Curve
In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949,Stephen Hawking, '' My Brief History'', chapter 11 who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Timelike Homotopic
On a Lorentzian manifold, certain curves are distinguished as timelike. A timelike homotopy between two timelike curves is a homotopy such that each intermediate curve is timelike. No closed timelike curve (CTC) on a Lorentzian manifold is timelike homotopic to a point (that is, null timelike homotopic); such a manifold is therefore said to be multiply connected by timelike curves (or timelike multiply connected). A manifold such as the 3-sphere can be simply connected (by any type of curve), and at the same time be timelike multiply connected. Equivalence classes of timelike homotopic curves define their own fundamental group, as noted by Smith (1967). A smooth topological feature which prevents a CTC from being deformed to a point may be called a timelike topological feature In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Timelike Multiply Connected
Suppose a Lorentzian manifold contains a closed timelike curve (CTC). No CTC can be continuously deformed as a CTC (is timelike homotopic) to a point, as that point would not be causally well behaved. Therefore, any Lorentzian manifold containing a CTC is said to be timelike multiply connected. A Lorentzian manifold that does not contain a CTC is said to be timelike simply connected. Any Lorentzian manifold which is timelike multiply connected has a diffeomorphic universal covering space A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete spa ... which is timelike simply connected. For instance, a three-sphere with a Lorentzian metric is timelike multiply connected, (because any compact Lorentzian manifold contains a CTC), but has a diffeomorphic universal covering space which contains no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffeomorphic
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an Inverse function, invertible Function (mathematics), function that maps one differentiable manifold to another such that both the function and its inverse function, inverse are differentiable. Definition Given two manifolds M and N, a Differentiable manifold#Differentiable functions, differentiable Map (mathematics), map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Covering Space
A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete space D and for every x \in X an Neighbourhood (mathematics), open neighborhood U \subset X, such that \pi^(U)= \displaystyle \bigsqcup_ V_d and \pi, _:V_d \rightarrow U is a homeomorphism for every d \in D . Often, the notion of a covering is used for the covering space E as well as for the map \pi : E \rightarrow X. The open sets V_ are called sheets, which are uniquely determined up to a homeomorphism if U is Connected space, connected. For each x \in X the discrete subset \pi^(x) is called the fiber of x. The degree of a covering is the cardinality of the space D. If E is Path connected, path-connected, then the covering \pi : E \rightarrow X is denoted as a path-connected covering. Examples * For every topological space X there exi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories). Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated, or Hausdorff, or a CW complex. In the same vein as above, a "map" is a continuous function, possibly with some extra constraints. Often, one works with a pointed space -- that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which preserv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]