Three-address Code
   HOME
*





Three-address Code
In computer science, three-address code (often abbreviated to TAC or 3AC) is an intermediate code used by optimizing compilers to aid in the implementation of code-improving transformations. Each TAC instruction has at most three operands and is typically a combination of assignment and a binary operator. For example, t1 := t2 + t3. The name derives from the use of three operands in these statements even though instructions with fewer operands may occur. Since three-address code is used as an intermediate language within compilers, the operands will most likely not be concrete memory addresses or processor registers, but rather symbolic addresses that will be translated into actual addresses during register allocation. It is also not uncommon that operand names are numbered sequentially since three-address code is typically generated by the compiler. A refinement of three-address code is A-normal form (ANF). Examples In three-address code, this would be broken down into several ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intermediate Language
An intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be ''accurate'' – capable of representing the source code without loss of information – and ''independent'' of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program. In the latter case it is also called an ''intermediate language''. A canonical example is found in most modern compilers. For example, the CPython interpreter transforms the linear human-readable text representing a program into an intermediate graph structure that allows flow analysis and re-arrangement before execution. Use of an intermediate representation such as this allows compiler systems like the GNU Compiler Collection and LLVM to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optimizing Compiler
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of ''optimizing transformations'', algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster. It has been shown that some code optimization problems are NP-complete, or even undecidable. In practice, factors such as the programmer's willingness to wait for the compiler to complete its task place upper limits on the optimizations that a compiler might provide. Optimization is generally a very CPU- and memory-intensive process. In the past, computer memory limitations were also a major factor in limiting which optimizations coul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Code-improving Transformation
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of ''optimizing transformations'', algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster. It has been shown that some code optimization problems are NP-complete, or even undecidable. In practice, factors such as the programmer's willingness to wait for the compiler to complete its task place upper limits on the optimizations that a compiler might provide. Optimization is generally a very CPU- and memory-intensive process. In the past, computer memory limitations were also a major factor in limiting which optimizations coul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Processor Registers
A processor register is a quickly accessible location available to a computer's Processor (computing), processor. Registers usually consist of a small amount of fast Computer storage, storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900 series, ICT 1900. Almost all computers, whether load/store architecture or not, load data from a larger memory into registers where it is used for arithmetic operations and is manipulated or tested by machine instructions. Manipulated data is then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either Static random-access memory, static or Dynamic random-access memory, dynamic Random-access memory, RAM as main memory, with the latter usually accessed via one or more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Register Allocation
In compiler optimization, register allocation is the process of assigning local automatic variables and expression results to a limited number of processor registers. Register allocation can happen over a basic block (''local register allocation''), over a whole function/ procedure (''global register allocation''), or across function boundaries traversed via call-graph (''interprocedural register allocation''). When done per function/procedure the calling convention may require insertion of save/restore around each call-site. Context Principle {, class="wikitable floatright" , + Different number of scalar registers in the most common architectures , - ! Architecture ! scope="col" , 32 bits ! scope="col" , 64 bits , - ! scope="row" , ARM , 15 , 31 , - ! scope="row" , Intel x86 , 8 , 16 , - ! scope="row" , MIPS , 32 , 32 , - ! scope="row" , POWER/PowerPC , 32 , 32 , - ! scope="row" , RISC-V , 16/32 , 32 , - ! scope="row" , SP ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


A-normal Form
In computer science, A-normal form (abbreviated ANF) is an Intermediate language, intermediate representation of program (computer science), programs in functional compilers. In ANF, all argument (computer science), arguments to a function (computer science), function must be trivial (constants or variables). That is, evaluation of each argument must halt immediately. ANF is introduced by Sabry and Matthias Felleisen, Felleisen in 1992 as a simpler alternative to continuation-passing style (CPS). Some of the advantages of using CPS as an intermediate representation are that optimizations are easier to perform on programs in CPS than in the source language, and that it is also easier for compilers to generate machine code for programs in CPS. Flanagan et al. showed how compilers could use ANF to achieve those same benefits with one source-level transformation; in contrast, for realistic compilers the CPS transformation typically involves additional phases, for example, to simplif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE