Tetrakaidecahedron
   HOME
*





Tetrakaidecahedron
240px, A tetradecahedron with ''D2d'' symmetry, existing in the Weaire–Phelan structure A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces. A tetradecahedron is sometimes called a tetrakaidecahedron. No difference in meaning is ascribed. The Greek word '' kai'' means 'and'. There is evidence that mammalian epidermal cells are shaped like flattened tetrakaidecahedra, an idea first suggested by Lord Kelvin. The polyhedron can also be found in soap bubbles and in sintered ceramics, due to its ability to tesselate in 3D space. Convex There are 1,496,225,352 topologically distinct ''convex'' tetradecahedra, excluding mirror images, having at least 9 vertices. (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prism (geometry)
In geometry, a prism is a polyhedron comprising an polygon Base (geometry), base, a second base which is a Translation (geometry), translated copy (rigidly moved without rotation) of the first, and other Face (geometry), faces, necessarily all parallelograms, joining corresponding sides of the two bases. All Cross section (geometry), cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids. Like many basic geometric terms, the word ''prism'' () was first used in Euclid's Elements. Euclid defined the term in Book XI as “a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms”. However, this definition has been criticized for not being specific enough in relation to the nature of the bases, which caused confusion among later geometry writers. Oblique prism An oblique prism is a pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bilunabirotunda
In geometry, the bilunabirotunda is one of the Johnson solids (). Geometry It is one of the elementary Johnson solids, which do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. However, it does have a strong relationship to the icosidodecahedron, an Archimedean solid. Either one of the two clusters of two pentagons and two triangles can be aligned with a congruent patch of faces on the icosidodecahedron. If two bilunabirotundae are aligned this way on opposite sides of the icosidodecahedron, then two vertices of the bilunabirotundae meet in the very center of the icosidodecahedron. The other two clusters of faces of the bilunabirotunda, the ''lunes'' (each ''lune'' featuring two triangles adjacent to opposite sides of one square), can be aligned with a congruent patch of faces on the rhombicosidodecahedron. If two bilunabirotundae are aligned this way on opposite sides of the rhombicosidodecahedron, then a cube can be put between the bilun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sphenocorona
In geometry, the sphenocorona is one of the Johnson solids (). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. Johnson uses the prefix ''spheno-'' to refer to a wedge-like complex formed by two adjacent '' lunes'', a lune being a square with equilateral triangles attached on opposite sides. Likewise, the suffix ''-corona'' refers to a crownlike complex of 8 equilateral triangles. Joining both complexes together results in the sphenocorona.. Cartesian coordinates Let ''k'' ≈ 0.85273 be the smallest positive root of the quartic polynomial : 60x^4-48x^3-100x^2+56x+23. Then, Cartesian coordinates of a sphenocorona with edge length 2 are given by the union of the orbits of the points :\left(0,1,2\sqrt\right),\,(2k,1,0),\left(0,1+\frac,\frac\right),\,\left(1,0,-\sqrt\right) under the action of the group generated by reflections about the xz-plane and the yz-plane. One may then calculate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Augmented Truncated Tetrahedron
In geometry, the augmented truncated tetrahedron is one of the Johnson solids (). It is created by attaching a triangular cupola () to one hexagonal face of a truncated tetrahedron In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedro .... External links * Johnson solids {{Polyhedron-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metabiaugmented Hexagonal Prism
In geometry, the metabiaugmented hexagonal prism is one of the Johnson solids (). As the name suggests, it can be constructed by doubly augmenting a hexagonal prism by attaching square pyramids () to two of its nonadjacent, nonparallel equatorial faces. Attaching the pyramids to opposite equatorial faces yields a parabiaugmented hexagonal prism. (The solid obtained by attaching pyramids to adjacent equatorial faces is not convex, and thus not a Johnson solid.) See also * Hexagonal prism In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.. Since it has 8 faces, it is an octahedron. However, the term ''octahedron'' is primarily used ... External links * Johnson solids {{Polyhedron-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parabiaugmented Hexagonal Prism
In geometry, the parabiaugmented hexagonal prism is one of the Johnson solids (). As the name suggests, it can be constructed by doubly augmenting a hexagonal prism by attaching square pyramids () to two of its nonadjacent, parallel (opposite) equatorial faces. Attaching the pyramids to nonadjacent, nonparallel equatorial faces yields a metabiaugmented hexagonal prism In geometry, the metabiaugmented hexagonal prism is one of the Johnson solids (). As the name suggests, it can be constructed by doubly augmenting a hexagonal prism by attaching square pyramids () to two of its nonadjacent, nonparallel equatorial ... (). (The solid obtained by attaching pyramids to adjacent equatorial faces is not convex, and thus not a Johnson solid.) External links * Johnson solids {{Polyhedron-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triaugmented Triangular Prism
The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid. The edges and vertices of the triaugmented triangular prism form a maximal planar graph with 9 vertices and 21 edges, called the Fritsch graph. It was used by Rudolf and Gerda Fritsch to show that Alfred Kempe's attempted proof of the four color theorem was incorrect. The Fritsch graph is one of only six graphs in which every neighborhood is a 4- or 5-vertex cycle. The dual polyhedron of the triaugmented triangular prism is an associahedron, a polyhedron with four quadrilateral faces and six ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Orthobicupola
In geometry, the triangular orthobicupola is one of the Johnson solids (). As the name suggests, it can be constructed by attaching two triangular cupolas () along their bases. It has an equal number of squares and triangles at each vertex; however, it is not vertex-transitive. It is also called an ''anticuboctahedron'', ''twisted cuboctahedron'' or ''disheptahedron''. It is also a canonical polyhedron. The ''triangular orthobicupola'' is the first in an infinite set of orthobicupolae. Relation to cuboctahedra The ''triangular orthobicupola'' has a superficial resemblance to the cuboctahedron, which would be known as the ''triangular gyrobicupola'' in the nomenclature of Johnson solids — the difference is that the two triangular cupolas which make up the triangular orthobicupola are joined so that pairs of matching sides abut (hence, "ortho"); the cuboctahedron is joined so that triangles abut squares and vice versa. Given a triangular orthobicupola, a 60-degree rotati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elongated Triangular Cupola
In geometry, the elongated triangular cupola is one of the Johnson solids (). As the name suggests, it can be constructed by elongating a triangular cupola () by attaching a hexagonal prism to its base. Formulae The following formulae for volume and surface area can be used if all faces are regular, with edge length ''a'': :V=\left(\frac\left(5\sqrt+9\sqrt\right)\right)a^3\approx3.77659...a^3 :A=\left(9+\frac\right)a^2\approx13.3301...a^2 Dual polyhedron The dual of the elongated triangular cupola has 15 faces: 6 isosceles triangles, 3 rhombi, and 6 quadrilaterals. Related polyhedra and honeycombs The elongated triangular cupola can form a tessellation of space with tetrahedra and square pyramid In geometry, a square pyramid is a pyramid having a square base. If the apex is perpendicularly above the center of the square, it is a right square pyramid, and has symmetry. If all edge lengths are equal, it is an equilateral square pyramid, ...s. References Externa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Johnson Solid
In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that isohedral, each face must be the same polygon, or that the same polygons join around each Vertex (geometry), vertex. An example of a Johnson solid is the square-based Pyramid (geometry), pyramid with equilateral sides (square pyramid, ); it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform polyhedron, uniform (i.e., not Platonic solid, Archimedean solid, prism (geometry), uniform prism, or uniform antiprism) before they refer to it as a “Johnson solid”. As in any strictly convex solid, at least three faces meet at every vertex, and the total of their angles is less than 360 degrees. Since a regular polygon has angles at least 60 degrees, it follows that at most five faces meet at any vertex. The pentagonal pyramid () is an example that has a degree-5 vertex. Although there is no obvious restriction tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexagonal Antiprism
In geometry, the hexagonal antiprism is the 4th in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. Antiprisms are similar to prisms except the bases are twisted relative to each other, and that the side faces are triangles, rather than quadrilaterals. In the case of a regular 6-sided base, one usually considers the case where its copy is twisted by an angle . Extra regularity is obtained by the line connecting the base centers being perpendicular to the base planes, making it a right antiprism. As faces, it has the two bases and, connecting those bases, isosceles triangles. If faces are all regular, it is a semiregular polyhedron. Crossed antiprism A crossed hexagonal antiprism is a star polyhedron, topologically identical to the convex ''hexagonal antiprism'' with the same vertex arrangement, but it can't be made uniform; the sides are isosceles triangles. Its vertex configuration is 3.3/2.3.6, with one triangl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]