Two-sided Prime
In number theory, a left-truncatable prime is a prime number which, in a given base, contains no 0, and if the leading ("left") digit is successively removed, then all resulting numbers are prime. For example, 9137, since 9137, 137, 37 and 7 are all prime. Decimal representation is often assumed and always used in this article. A right-truncatable prime is a prime which remains prime when the last ("right") digit is successively removed. 7393 is an example of a right-truncatable prime, since 7393, 739, 73, and 7 are all prime. A left-and-right-truncatable prime is a prime which remains prime if the leading ("left") and last ("right") digits are simultaneously successively removed down to a one- or two-digit prime. 1825711 is an example of a left-and-right-truncatable prime, since 1825711, 82571, 257, and 5 are all prime. In base 10, there are exactly 4260 left-truncatable primes, 83 right-truncatable primes, and 920,720,315 left-and-right-truncatable primes. History An author ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radix
In a positional numeral system, the radix or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal/denary system (the most common system in use today) the radix (base number) is ten, because it uses the ten digits from 0 through 9. In any standard positional numeral system, a number is conventionally written as with ''x'' as the string of digits and ''y'' as its base, although for base ten the subscript is usually assumed (and omitted, together with the pair of parentheses), as it is the most common way to express value. For example, (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four. Etymology ''Radix'' is a Latin word for "root". ''Root'' can be considered a synonym for ''base,'' in the arithmetical sense. In numeral systems In the system with radix 13, for example, a string of digits such as 398 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A ''decimal numeral'' (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , where is an integer, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Recreational Mathematics
The ''Journal of Recreational Mathematics'' was an American journal dedicated to recreational mathematics, started in 1968. It had generally been published quarterly by the Baywood Publishing Company, until it ceased publication with the last issue (volume 38, number 2) published in 2014. The initial publisher (of volumes 1–5) was Greenwood Periodicals. Harry L. Nelson was primary editor for five years (volumes 9 through 13, excepting volume 13, number 4, when the initial editor returned as lead) and Joseph Madachy, the initial lead editor and editor of a predecessor called ''Recreational Mathematics Magazine'' which ran during the years 1961 to 1964, was the editor for many years. Charles Ashbacher and Colin Singleton took over as editors when Madachy retired (volume 30 number 1). The final editors were Ashbacher and Lamarr Widmer. The journal has from its inception also listed associate editors, one of whom was Leo Moser. The journal contains: # Original articles # Book rev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics Magazine
''Mathematics Magazine'' is a refereed bimonthly publication of the Mathematical Association of America. Its intended audience is teachers of collegiate mathematics, especially at the junior/senior level, and their students. It is explicitly a journal of mathematics rather than pedagogy. Rather than articles in the terse "theorem-proof" style of research journals, it seeks articles which provide a context for the mathematics they deliver, with examples, applications, illustrations, and historical background. Paid circulation in 2008 was 9,500 and total circulation was 10,000. ''Mathematics Magazine'' is a continuation of ''Mathematics News Letter'' (1926-1934) and ''National Mathematics Magazine'' (1934-1945.) Doris Schattschneider became the first female editor of ''Mathematics Magazine'' in 1981. .. The MAA gives the Carl B. Allendoerfer Awards annually "for articles of expository excellence" published in ''Mathematics Magazine''. See also *''American Mathematical Mont ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Numeral System
A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using Numerical digit, digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number ''eleven'' in the decimal numeral system (used in common life), the number ''three'' in the binary numeral system (used in computers), and the number ''two'' in the unary numeral system (e.g. used in Tally marks, tallying scores). The number the numeral represents is called its value. Not all number systems can represent all numbers that are considered in the modern days; for example, Roman numerals have no zero. Ideally, a numeral system will: *Represent a useful set of numbers (e.g. all integers, or rational numbers) *Give every number represented a unique representation (or at least a standard representation) *Reflec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Of 10
A power of 10 is any of the integer exponentiation, powers of the number 10 (number), ten; in other words, ten multiplication, multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ten are: :1, 10, 100 (number), 100, 1,000, 10,000, 100,000, 1,000,000, 10,000,000. ... Positive powers In decimal notation the ''n''th power of ten is written as '1' followed by ''n'' zeroes. It can also be written as 10''n'' or as 1E''n'' in E notation. See order of magnitude and orders of magnitude (numbers) for named powers of ten. There are two conventions for naming positive powers of ten, beginning with 109, called the long and short scales. Where a power of ten has different names in the two conventions, the long scale name is shown in parentheses. The positive 10 power related to a short scale name can be determined based on its Latin name-prefix using the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutable Prime
A permutable prime, also known as anagrammatic prime, is a prime number which, in a given base, can have its digits' positions switched through any permutation and still be a prime number. H. E. Richert, who is supposedly the first to study these primes, called them permutable primes, but later they were also called absolute primes. In base 10, all the permutable primes with fewer than 49,081 digits are known : 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, R19 (1111111111111111111), R23, R317, R1031, ... Of the above, there are 16 unique permutation sets, with smallest elements :2, 3, 5, 7, R2, 13, 17, 37, 79, 113, 199, 337, R19, R23, R317, R1031, ... Note R''n'' = \tfrac is a repunit, a number consisting only of ''n'' ones (in base 10). Any repunit prime is a permutable prime with the above definition, but some definitions require at least two distinct digits. All permutable primes of two or more digits are comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Pages
The PrimePages is a website about prime numbers maintained by Chris Caldwell at the University of Tennessee at Martin. The site maintains the list of the "5,000 largest known primes", selected smaller primes of special forms, and many "top twenty" lists for primes of various forms. , the 5,000th prime has around 412,000 digits.. Retrieved on 2018-02-12. The PrimePages has articles on primes and primality testing. It includes "The Prime Glossary" with articles on hundreds of glosses related to primes, and "Prime Curios!" with thousands of curios about specific numbers. The database started as a list of titanic primes (primes with at least 1000 decimal digits) by Samuel Yates. In subsequent years, the whole top-5,000 has consisted of gigantic primes (primes with at least 10,000 decimal digits). Primes of special forms are kept on the current lists if they are titanic and in the top-20 or top-5 for their form. See also *List of prime numbers This is a list of articles about pri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brady Haran
Brady John Haran (born 18 June 1976) is an Australian-British independent filmmaker and video journalist who produces educational videos and documentary films for his YouTube channels, the most notable being ''Periodic Videos'' and ''Numberphile''. Haran is also the co-host of the'' Hello Internet'' podcast along with fellow educational YouTuber CGP Grey. On 22 August 2017, Haran launched his second podcast, called ''The Unmade Podcast'', and on 11 November 2018, he launched his third podcast, '' The Numberphile Podcast'', based on his mathematics-centered channel of the same name. Reporter and filmmaker Brady Haran studied journalism for a year before being hired by ''The Adelaide Advertiser''. In 2002, he moved from Australia to Nottingham, United Kingdom. In Nottingham, he worked for the BBC, began to work with film, and reported for ''East Midlands Today'', BBC News Online and BBC radio stations. In 2007, Haran worked as a filmmaker-in-residence for Nottingham Science ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |