HOME
*



picture info

Truncated Infinite-order Square Tiling
In geometry, the truncated infinite-order square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t. Uniform color In (*∞44) symmetry this tiling has 3 colors. Bisecting the isosceles triangle domains can double the symmetry to *∞42 symmetry. : Symmetry The dual of the tiling represents the fundamental domains of (*∞44) orbifold symmetry. From ∞,4,4)(*∞44) symmetry, there are 15 small index subgroup (11 unique) by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled to *∞42 by adding a bisecting mirror across the fundamental domains. The subgroup index-8 group, 1+,∞,1+,4,1+,4)(∞22∞22) is the commu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Subgroup Index
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or :H/math> or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same size as ''H'', the index is related to the orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' is finite, the formula may be written as , G:H, = , G, /, H, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Tilings
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ''ABCD'' would be denoted . Characterizations A convex quadrilateral is a square if and only if it is any one of the following: * A rectangle with two adjacent equal sides * A rhombus with a right vertex angle * A rhombus with all angles equal * A parallelogram with one right vertex angle and two adjacent equal sides * A quadrilateral with four equal sides and four right angles * A quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other (i.e., a rhombus with equal diagonals) * A convex quadrilateral with successi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isogonal Tilings
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Tilings
Hyperbolic is an adjective describing something that resembles or pertains to a hyperbola (a curve), to hyperbole (an overstatement or exaggeration), or to hyperbolic geometry. The following phenomena are described as ''hyperbolic'' because they manifest hyperbolas, not because something about them is exaggerated. * Hyperbolic angle, an unbounded variable referring to a hyperbola instead of a circle * Hyperbolic coordinates, location by geometric mean and hyperbolic angle in quadrant I *Hyperbolic distribution, a probability distribution characterized by the logarithm of the probability density function being a hyperbola * Hyperbolic equilibrium point, a fixed point that does not have any center manifolds * Hyperbolic function, an analog of an ordinary trigonometric or circular function * Hyperbolic geometric graph, a random network generated by connecting nearby points sprinkled in a hyperbolic space * Hyperbolic geometry, a non-Euclidean geometry * Hyperbolic group, a finitely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Horton Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life. Born and raised in Liverpool, Conway spent the first half of his career at the University of Cambridge before moving to the United States, where he held the John von Neumann Professorship at Princeton University for the rest of his career. On 11 April 2020, at age 82, he died of complications from COVID-19. Early life and education Conway was born on 26 December 1937 in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at a very early age. By the time he was 11, his ambition was to become a mathematician. After leaving sixth form, he studied mathematics at Gonville and Caius College, Camb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Regular Polytopes
This article lists the regular polytopes and regular polytope compounds in Euclidean geometry, Euclidean, spherical geometry, spherical and hyperbolic geometry, hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an ''n''-sphere, Euclidean and hyperbolic spaces. A Schläfli symbol describing an ''n''-polytope equivalently describes a tessellation of an (''n'' − 1)-sphere. In addition, the symmetry of a regular polytope or tessellation is expressed as a Coxeter group, which Coxeter expressed identically to the Schläfli symbol, except delimiting by square brackets, a notation that is called Coxeter notation. Another related symbol is the Coxeter-Dynkin diagram which represents a symmetry group with no rings, and the represents regular polytope or tessellation with a ring on the first node. For example, the cube has Schläfli symbol , and with its octahedral symmetry, [4,3] or , it is represented by Coxeter diagram . The regular polytopes are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Tilings In Hyperbolic Plane
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive ( transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry. Uniform tilings can be identified by their vertex configuration, a sequence of numbers representing the number of sides of the polygons around each vertex. For example, 7.7.7 represents the heptagonal tiling which has 3 heptagons around each vertex. It is also regular since all the polygons are the same size, so it can also be given the Schläfli symbol . Uniform tilings may be regular (if also face- and edge-transitive), quasi-regular (if edge-transitive but not face-transitive) or semi-regular (if neither edge- nor face-transitive). For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

I22i22 Symmetry
I, or i, is the ninth letter and the third vowel letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''i'' (pronounced ), plural ''ies''. History In the Phoenician alphabet, the letter may have originated in a hieroglyph for an arm that represented a voiced pharyngeal fricative () in Egyptian, but was reassigned to (as in English "yes") by Semites, because their word for "arm" began with that sound. This letter could also be used to represent , the close front unrounded vowel, mainly in foreign words. The Greeks adopted a form of this Phoenician ''yodh'' as their letter ''iota'' () to represent , the same as in the Old Italic alphabet. In Latin (as in Modern Greek), it was also used to represent and this use persists in the languages that descended from Latin. The modern letter ' j' originated as a variation of 'i', and both were used interchangeably fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

I2i2 Symmetry
In geometry, the tetraapeirogonal tiling is a uniform tilings in hyperbolic plane, uniform tiling of the hyperbolic geometry, hyperbolic plane with a Schläfli symbol of r. Uniform constructions There are 3 lower symmetry uniform construction, one with two colors of apeirogons, one with two colors of squares, and one with two colors of each: Symmetry The dual to this tiling represents the fundamental domains of *∞2∞2 symmetry group. The symmetry can be doubled by adding mirrors on either diagonal of the rhombic domains, creating ii2 symmetry, *∞∞2 and i44 symmetry, *∞44 symmetry. Related polyhedra and tiling See also * List of uniform planar tilings * Tilings of regular polygons * Uniform tilings in hyperbolic plane References * John Horton Conway, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, (Chapter 19, "The Hyperbolic Archimedean Tessellations") * External links

* * {{Tessellation Apeirogonal tilings Hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




I424 Symmetry
I4, i4, I 4 or I-4 may refer to: Arts, entertainment, and media * '' I-4: Loafing and Camouflage'', a Greek film Military * 1st Life Grenadier Regiment (Sweden) (1816–1927), a Swedish infantry regiment * , a World War II Type J1 submarine of the Imperial Japanese Navy * Life Grenadier Regiment (Sweden) (1928–1997), a Swedish infantry regiment * Tupolev I-4, a 1927 Soviet aircraft Science and technology * I-4 satellite * i4, an integer in XML-RPC Transportation * I4 engine, a piston engine * Interstate 4, an interstate highway in Florida * BMW i4 The BMW i4 (model code G26) is a battery electric compact executive car produced by BMW since 2021. It adopts a five-door liftback body style and is marketed as a four-door coupé. The initial concept version, named BMW i Vision Dynamics, debu ..., a German mid-size electric sedan * Interstate Airlines, by IATA airline designator * LB&SCR I4 class, a British locomotive See also * iPhone 4, a smartphone {{Lett ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]