Truncated Binary Encoding
Truncated binary encoding is an entropy encoding typically used for uniform probability distributions with a finite alphabet. It is parameterized by an alphabet with total size of number ''n''. It is a slightly more general form of Binary numeral system, binary encoding when ''n'' is not a power of two. If ''n'' is a power of two, then the coded value for 0 ≤ ''x'' < ''n'' is the simple binary code for ''x'' of length log2(''n''). Otherwise let ''k'' = floor(log2(''n'')), such that 2''k'' < ''n'' < 2''k''+1 and let ''u'' = 2''k''+1 − ''n''. Truncated binary encoding assigns the first ''u'' symbols codewords of length ''k'' and then assigns the remaining ''n'' − ''u'' symbols the last ''n'' − ''u'' codewords of length ''k'' + 1. Because all the codewords of length ''k'' + 1 consist of an unassigned codeword of length ''k'' with a "0" or "1" appended, the resulting code is a prefix code. History U ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entropy Encoding
In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have expected code length greater or equal to the entropy of the source. More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies \mathbb E_ (d(x))\geq \mathbb E_ \log_b(P(x))/math>, where l is the number of symbols in a code word, d is the coding function, b is the number of symbols used to make output codes and P is the probability of the source symbol. An entropy coding attempts to approach this lower bound. Two of the most common entropy coding techniques are Huffman coding and arithmetic coding. If the approximate entropy characteristics of a data stream are known in advance (especially for signal compression), a simpler static code may be useful. These static codes in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather conditions at some future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc. Introduction A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by \Omega, is the set of all possible outcomes of a random phe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Numeral System
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" ( one). The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation. History The modern binary number system was studied in Europe in the 16th and 17th centuries by Thomas Harriot, Juan Caramuel y Lobkowitz, and Gottfried Leibniz. However, systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, and India. Leibniz was specifica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer as the exponent. In a context where only integers are considered, is restricted to non-negative values, so there are 1, 2, and 2 multiplied by itself a certain number of times. The first ten powers of 2 for non-negative values of are: : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... Because two is the base of the binary numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100...000 or 0.00...001, just like a power of 10 in the decimal system. Computer science Two to the exponent of , written as , is the number of ways the bits in a binary word of length can be arranged. A word, interpreted as an unsigned integer, can represent values from 0 () to () inclusively. Corresponding signed integer values can be positive, negative and zero; see signed n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prefix Code
A prefix code is a type of code system distinguished by its possession of the "prefix property", which requires that there is no whole code word in the system that is a prefix (initial segment) of any other code word in the system. It is trivially true for fixed-length code, so only a point of consideration in variable-length code. For example, a code with code words has the prefix property; a code consisting of does not, because "5" is a prefix of "59" and also of "55". A prefix code is a uniquely decodable code: given a complete and accurate sequence, a receiver can identify each word without requiring a special marker between words. However, there are uniquely decodable codes that are not prefix codes; for instance, the reverse of a prefix code is still uniquely decodable (it is a suffix code), but it is not necessarily a prefix code. Prefix codes are also known as prefix-free codes, prefix condition codes and instantaneous codes. Although Huffman coding is just one of many alg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Codewords
In communication, a code word is an element of a standardized code or protocol. Each code word is assembled in accordance with the specific rules of the code and assigned a unique meaning. Code words are typically used for reasons of reliability, clarity, brevity, or secrecy. See also * Code word (figure of speech) * Coded set * Commercial code (communications) * Compartmentalization (information security) * Duress code * Error correction and detection * Marine VHF radio * Password * Safeword In BDSM, a safeword is a code word, series of code words or other signal used by a person to communicate their physical or emotional state, typically when approaching, or crossing, a physical, emotional, or moral boundary. Some safewords are used ... * Spelling alphabet References * * *UNHCR Procedure for Radio Communication External links UNHCR Procedure for Radio Communication Data transmission Cryptography {{crypto-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Data Compression Ratio
Data compression ratio, also known as compression power, is a measurement of the relative reduction in size of data representation produced by a data compression algorithm. It is typically expressed as the division of uncompressed size by compressed size. Definition Data compression ratio is defined as the ratio between the ''uncompressed size'' and ''compressed size'': : = \frac Thus, a representation that compresses a file's storage size from 10 MB to 2 MB has a compression ratio of 10/2 = 5, often notated as an explicit ratio, 5:1 (read "five" to "one"), or as an implicit ratio, 5/1. This formulation applies equally for compression, where the uncompressed size is that of the original; and for decompression, where the uncompressed size is that of the reproduction. Sometimes the ''space saving'' is given instead, which is defined as the reduction in size relative to the uncompressed size: : = 1 - \frac Thus, a representation that compresses the storage size of a file from 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Benford's Law
Benford's law, also known as the Newcomb–Benford law, the law of anomalous numbers, or the first-digit law, is an observation that in many real-life sets of numerical data, the leading digit is likely to be small.Arno Berger and Theodore P. HillBenford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem 2011. In sets that obey the law, the number 1 appears as the leading significant digit about 30% of the time, while 9 appears as the leading significant digit less than 5% of the time. If the digits were distributed uniformly, they would each occur about 11.1% of the time. Benford's law also makes predictions about the distribution of second digits, third digits, digit combinations, and so on. The graph to the right shows Benford's law for base 10, one of infinitely many cases of a generalized law regarding numbers expressed in arbitrary (integer) bases, which rules out the possibility that the phenomenon might be an artifact of the base-10 number syste ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Golomb Coding
Golomb coding is a lossless data compression method using a family of data compression codes invented by Solomon W. Golomb in the 1960s. Alphabets following a geometric distribution will have a Golomb code as an optimal prefix code, making Golomb coding highly suitable for situations in which the occurrence of small values in the input stream is significantly more likely than large values. Rice coding Rice coding (invented by Robert F. Rice) denotes using a subset of the family of Golomb codes to produce a simpler (but possibly suboptimal) prefix code. Rice used this set of codes in an adaptive coding scheme; "Rice coding" can refer either to that adaptive scheme or to using that subset of Golomb codes. Whereas a Golomb code has a tunable parameter that can be any positive integer value, Rice codes are those in which the tunable parameter is a power of two. This makes Rice codes convenient for use on a computer since multiplication and division by 2 can be implemented more e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |