Trigonal Trapezohedral Honeycomb
In geometry, the trigonal trapezohedral honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. Cells are identical trigonal trapezohedra or rhombohedra. Conway, Burgiel, and Goodman-Strauss call it an oblate cubille. Related honeycombs and tilings This honeycomb can be seen as a rhombic dodecahedral honeycomb, with the rhombic dodecahedra dissected with its center into 4 trigonal trapezohedra or rhombohedra. It is analogous to the regular hexagonal being dissectable into 3 rhombi and tiling the plane as a rhombille. The rhombille tiling is actually an orthogonal projection of the ''trigonal trapezohedral honeycomb''. A different orthogonal projection produces the quadrille where the rhombi are distorted into squares. Dual tiling It is dual to the quarter cubic honeycomb with tetrahedral and truncated tetrahedral cells: : See also *Architectonic and catoptric tessellation In geometry, John Horton Conway defines architectonic and catoptri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Honeycomb
In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as -honeycomb for an -dimensional honeycomb. An -dimensional uniform honeycomb can be constructed on the surface of -spheres, in -dimensional Euclidean space, and -dimensional hyperbolic space. A 2-dimensional uniform honeycomb is more often called a uniform tiling or uniform tessellation. Nearly all uniform tessellations can be generated by a Wythoff construction, and represented by a Coxeter–Dynkin diagram. The terminology for the convex uniform polytopes used in uniform polyhedron, uniform 4-polytope, uniform 5-polytope, uniform 6-polytope, uniform tiling, and convex uniform honeycomb articles were coined by Norman Johnson. Wythoffian tessellations can be defined by a vertex figure. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Honeycomb
In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as -honeycomb for an -dimensional honeycomb. An -dimensional uniform honeycomb can be constructed on the surface of -spheres, in -dimensional Euclidean space, and -dimensional hyperbolic space. A 2-dimensional uniform honeycomb is more often called a uniform tiling or uniform tessellation. Nearly all uniform tessellations can be generated by a Wythoff construction, and represented by a Coxeter–Dynkin diagram. The terminology for the convex uniform polytopes used in uniform polyhedron, uniform 4-polytope, uniform 5-polytope, uniform 6-polytope, uniform tiling, and convex uniform honeycomb articles were coined by Norman Johnson. Wythoffian tessellations can be defined by a vertex figure. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rhombille
In geometry, the rhombille tiling, also known as tumbling blocks, reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets of six rhombi meet at their 60° angles. Properties The rhombille tiling can be seen as a subdivision of a hexagonal tiling with each hexagon divided into three rhombi meeting at the center point of the hexagon. This subdivision represents a regular compound tiling. It can also be seen as a subdivision of four hexagonal tilings with each hexagon divided into 12 rhombi. The diagonals of each rhomb are in the ratio 1:. This is the dual tiling of the trihexagonal tiling or kagome lattice. As the dual to a uniform tiling, it is one of eleven possible Laves tilings, and in the face configuration for monohedral tilings it is denoted .6.3.6 It is al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rhombic Dodecahedron Net-4color
{{disambiguation ...
Rhombic may refer to: * Rhombus, a quadrilateral whose four sides all have the same length (often called a diamond) *Rhombic antenna, a broadband directional antenna most commonly used on shortwave frequencies * polyhedra formed from rhombuses, such as the rhombic dodecahedron or the rhombic triacontahedron or the rhombic dodecahedral honeycomb or the rhombic icosahedron or the rhombic hexecontahedron or the rhombic enneacontahedron or the trapezo-rhombic dodecahedron * other things that exhibit the shape of a rhombus, such as rhombic tiling, Rhombic Chess, rhombic drive, Rhombic Skaapsteker, rhombic egg eater, rhombic night adder, forest rhombic night adder ''Causus maculatus'' is viper species found mainly in West- and Central Africa. No subspecies are currently recognized. Common names include forest rhombic night adder,Mallow D, Ludwig D, Nilson G. 2003. True Vipers: Natural History and Toxinolo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rhombic Dodecahedron 4color
{{disambiguation ...
Rhombic may refer to: * Rhombus, a quadrilateral whose four sides all have the same length (often called a diamond) *Rhombic antenna, a broadband directional antenna most commonly used on shortwave frequencies * polyhedra formed from rhombuses, such as the rhombic dodecahedron or the rhombic triacontahedron or the rhombic dodecahedral honeycomb or the rhombic icosahedron or the rhombic hexecontahedron or the rhombic enneacontahedron or the trapezo-rhombic dodecahedron * other things that exhibit the shape of a rhombus, such as rhombic tiling, Rhombic Chess, rhombic drive, Rhombic Skaapsteker, rhombic egg eater, rhombic night adder, forest rhombic night adder ''Causus maculatus'' is viper species found mainly in West- and Central Africa. No subspecies are currently recognized. Common names include forest rhombic night adder,Mallow D, Ludwig D, Nilson G. 2003. True Vipers: Natural History and Toxinolo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rhombohedron
In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled. A parallelogram with sides of equal length (equilateral) is a rhombus but not a rhomboi ...) is a three-dimensional figure with six faces which are rhombus, rhombi. It is a special case of a parallelepiped where all edges are the same length. It can be used to define the rhombohedral lattice system, a Honeycomb (geometry), honeycomb with rhombohedral cells. A cube is a special case of a rhombohedron with all sides square. In general a ''rhombohedron'' can have up to three types of rhombic faces in congruent opposite pairs, ''C''''i'' symmetry, Order (group theory), order 2. Four points forming non-adjacent vertices of a rhombohedron necessarily form the four vertices of an orthocentric tetrahedron, and all orthocentric tetrahedra c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trigonal Trapezohedron
In geometry, a trigonal trapezohedron is a rhombohedron (a polyhedron with six rhombus-shaped faces) in which, additionally, all six faces are congruent. Alternative names for the same shape are the ''trigonal deltohedron'' or ''isohedral rhombohedron''. Some sources just call them ''rhombohedra''. Geometry Six identical rhombic faces can construct two configurations of trigonal trapezohedra. The ''acute'' or ''prolate'' form has three acute angle corners of the rhombic faces meeting at the two polar axis vertices. The ''obtuse'' or ''oblate'' or ''flat'' form has three obtuse angle corners of the rhombic faces meeting at the two polar axis vertices. More strongly than having all faces congruent, the trigonal trapezohedra are isohedral figures, meaning that they have symmetries that take any face to any other face. Special cases A cube can be interpreted as a special case of a trigonal trapezohedron, with square rather than rhombic faces. The two golden rhombohedra are the acut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dissection (geometry)
In geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another). It is usually required that the dissection use only a finite number of pieces. Additionally, to avoid set-theoretic issues related to the Banach–Tarski paradox and Tarski's circle-squaring problem, the pieces are typically required to be well-behaved. For instance, they may be restricted to being the closures of disjoint open sets. The Bolyai–Gerwien theorem states that any polygon may be dissected into any other polygon of the same area, using interior-disjoint polygonal pieces. It is not true, however, that any polyhedron has a dissection into any other polyhedron of the same volume using polyhedral pieces (see Dehn invariant). This process ''is'' possible, however, for any two honeycombs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rhombic Dodecahedral Honeycomb
The rhombic dodecahedral honeycomb (also dodecahedrille) is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is the Voronoi diagram of the face-centered cubic sphere-packing, which has the densest possible packing of equal spheres in ordinary space (see Kepler conjecture). Geometry It consists of copies of a single cell, the rhombic dodecahedron. All faces are rhombi, with diagonals in the ratio 1:. Three cells meet at each edge. The honeycomb is thus cell-transitive, face-transitive, and edge-transitive; but it is not vertex-transitive, as it has two kinds of vertex. The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing. Colorings Cells can be given 4 colors in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rhombohedra
In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a three-dimensional figure with six faces which are rhombi. It is a special case of a parallelepiped where all edges are the same length. It can be used to define the rhombohedral lattice system, a honeycomb with rhombohedral cells. A cube is a special case of a rhombohedron with all sides square. In general a ''rhombohedron'' can have up to three types of rhombic faces in congruent opposite pairs, ''C''''i'' symmetry, order 2. Four points forming non-adjacent vertices of a rhombohedron necessarily form the four vertices of an orthocentric tetrahedron, and all orthocentric tetrahedra can be formed in this way. Rhombohedral lattice system The rhombohedral lattice system has rhombohedral cells, with 6 congruent rhombic faces forming a trigonal trapezohedron: : Special cases by symmetry * Cube: with Oh symmetry, order 48. All faces are squares. * Trigonal trapezohedron (als ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trigonal Trapezohedra
In geometry, a trigonal trapezohedron is a rhombohedron (a polyhedron with six rhombus-shaped faces) in which, additionally, all six faces are congruent. Alternative names for the same shape are the ''trigonal deltohedron'' or ''isohedral rhombohedron''. Some sources just call them ''rhombohedra''. Geometry Six identical rhombic faces can construct two configurations of trigonal trapezohedra. The ''acute'' or ''prolate'' form has three acute angle corners of the rhombic faces meeting at the two polar axis vertices. The ''obtuse'' or ''oblate'' or ''flat'' form has three obtuse angle corners of the rhombic faces meeting at the two polar axis vertices. More strongly than having all faces congruent, the trigonal trapezohedra are isohedral figures, meaning that they have symmetries that take any face to any other face. Special cases A cube can be interpreted as a special case of a trigonal trapezohedron, with square rather than rhombic faces. The two golden rhombohedra are the acut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |