HOME





Total Ring Of Fractions
In abstract algebra, the total quotient ring or total ring of fractions is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings ''R'' that may have zero divisors. The construction embedding, embeds ''R'' in a larger ring (mathematics), ring, giving every non-zero-divisor of ''R'' an inverse in the larger ring. If the homomorphism from ''R'' to the new ring is to be injective, no further elements can be given an inverse. Definition Let R be a commutative ring and let S be the set (mathematics), set of elements that are not zero divisors in R; then S is a multiplicatively closed set. Hence we may localization of a ring, localize the ring R at the set S to obtain the total quotient ring S^R=Q(R). If R is a integral domain, domain, then S = R-\ and the total quotient ring is the same as the field of fractions. This justifies the notation Q(R), which is sometimes used for the field of fractions as well, since there is no am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Set
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is locally connected, which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological space X the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Ideal
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artinian Scheme
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme ''S'' and a morphism an ''S''-morphism. !$@ A B C D E F G H I J K L M N O P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. Formally, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an n such that I_=I_=\cdots. Equivalently, a ring is left-Noetherian (respectively right-Noetherian) if every left ideal (respectively right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on the Noetherian property ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Minimal Prime Ideal
In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal prime ideals. Definition A prime ideal ''P'' is said to be a minimal prime ideal over an ideal ''I'' if it is minimal among all prime ideals containing ''I''. (Note: if ''I'' is a prime ideal, then ''I'' is the only minimal prime over it.) A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal. A minimal prime ideal over an ideal ''I'' in a Noetherian ring ''R'' is precisely a minimal associated prime (also called isolated prime) of R/I; this follows for instance from the primary decomposition of ''I''. Examples * In a commutative Artinian ring, every maximal ideal is a minimal prime ideal. * In an integral domain, the only minimal prime ideal is the zero ideal. * In the ring Z of integers, the minimal pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduced Ring
In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, ''x''2 = 0 implies ''x'' = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced. The nilpotent elements of a commutative ring ''R'' form an ideal of ''R'', called the nilradical of ''R''; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero. A quotient ring ''R''/''I'' is reduced if and only if ''I'' is a radical ideal. Let \mathcal_R denote nilradical of a commutative ring R. There is a functor R \mapsto R/\mathcal_R of the category of commutative rings \text into the category of reduced rings \text and it is left adjoint to the inclusion functor I of \text into ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartier Divisor
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well-behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every datum is the sum of its constituent data). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their precise definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Regular Ring
In mathematics, a von Neumann regular ring is a ring ''R'' (associative, with 1, not necessarily commutative) such that for every element ''a'' in ''R'' there exists an ''x'' in ''R'' with . One may think of ''x'' as a "weak inverse" of the element ''a''; in general ''x'' is not uniquely determined by ''a''. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left ''R''-module is flat. Von Neumann regular rings were introduced by under the name of "regular rings", in the course of his study of von Neumann algebras and continuous geometry. Von Neumann regular rings should not be confused with the unrelated regular rings and regular local rings of commutative algebra. An element ''a'' of a ring is called a von Neumann regular element if there exists an ''x'' such that . An ideal \mathfrak is called a (von Neumann) regular ideal if for every element ''a'' in \mathfrak there exists an element ''x'' in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]