Topological Properties
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space ''X'' possesses that property every space homeomorphic to ''X'' possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets. A common problem in topology is to decide whether two topological spaces are homeomorphic or not. To prove that two spaces are ''not'' homeomorphic, it is sufficient to find a topological property which is not shared by them. Properties of topological properties A property P is: * Hereditary, if for every topological space (X, \mathcal) and X' \subset X, the subspace (X', \mathcal, X') has property P. * Weakly hereditary, if for ev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separated By A Function
In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different. Separable spaces are again a completely different topological concept. Definitions There are various ways in which two subsets of a topological space ''X'' can be considered to be separated. * ''A'' and ''B'' are disjoint if their intersection is the empty set. This property has nothing to do with topology as such, but only set theory. It is included here because it is the weakest in the sequence of different notions. ** ''A'' and ''B'' are separated in ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isolated Point
] In mathematics, a point ''x'' is called an isolated point of a subset ''S'' (in a topological space ''X'') if ''x'' is an element of ''S'' and there exists a neighborhood of ''x'' which does not contain any other points of ''S''. This is equivalent to saying that the singleton is an open set in the topological space ''S'' (considered as a subspace of ''X''). Another equivalent formulation is: an element ''x'' of ''S'' is an isolated point of ''S'' if and only if it is not a limit point of ''S''. If the space ''X'' is a metric space, for example a Euclidean space, then an element ''x'' of ''S'' is an isolated point of ''S'' if there exists an open ball around ''x'' which contains only finitely many elements of ''S''. Related notions A set that is made up only of isolated points is called a discrete set (see also discrete space). Any discrete subset ''S'' of Euclidean space must be countable, since the isolation of each of its points together with the fact that rationals are d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Space
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology. Definitions Given a set X: A metric space (E,d) is said to be '' uniformly discrete'' if there exists a ' r > 0 such that, for any x,y \in E, one has either x = y or d(x,y) > r. The topology underlying a metric space can be discrete, without the metric being uniformly discrete: for example the usual metric on the set \left\. Properties The underlying uniformity on a discrete metric space is the discrete uniformity, and the underlying topology on a discrete uniform space is the discrete topology. Thus, the different notions of discrete space are compatible with one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perfectly Normal Hausdorff Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precisely Separated By A Function
In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different. Separable spaces are again a completely different topological concept. Definitions There are various ways in which two subsets of a topological space ''X'' can be considered to be separated. * ''A'' and ''B'' are disjoint if their intersection is the empty set. This property has nothing to do with topology as such, but only set theory. It is included here because it is the weakest in the sequence of different notions. ** ''A'' and ''B'' are separated in ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perfectly Normal Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separated Sets
In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different. Separable spaces are again a completely different topological concept. Definitions There are various ways in which two subsets of a topological space ''X'' can be considered to be separated. * ''A'' and ''B'' are disjoint if their intersection is the empty set. This property has nothing to do with topology as such, but only set theory. It is included here because it is the weakest in the sequence of different notions. ** ''A'' and ''B'' are separated in ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Completely Normal
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition Of Unity
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval ,1such that for every point x\in X: * there is a neighbourhood of where all but a finite number of the functions of are 0, and * the sum of all the function values at is 1, i.e., \sum_ \rho(x) = 1. Partitions of unity are useful because they often allow one to extend local constructions to the whole space. They are also important in the interpolation of data, in signal processing, and the theory of spline functions. Existence The existence of partitions of unity assumes two distinct forms: # Given any open cover \_ of a space, there exists a partition \_ indexed ''over the same set'' such that supp \rho_i \subseteq U_i. Such a partition is said to be subordinate to the open cover \_i. # If the space is locally-compact, given any open cover \_ of a space, there exists a partition \_ indexed over a possibly distinct index set such that each has co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tychonoff Space
In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Tychonoff spaces are named after Andrey Nikolayevich Tychonoff, whose Russian name (Тихонов) is variously rendered as "Tychonov", "Tikhonov", "Tihonov", "Tichonov", etc. who introduced them in 1930 in order to avoid the pathological situation of Hausdorff spaces whose only continuous real-valued functions are constant maps. Definitions A topological space X is called if points can be separated from closed sets via (bounded) continuous real-valued functions. In technical terms this means: for any closed set A \subseteq X and any point x \in X \setminus A, there exists a real-valued continuous function f : X \to \R such tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |