Theorem Of Transition
In algebra, the theorem of transition is said to hold between commutative rings A \subset B if # B dominates A; i.e., for each proper ideal ''I'' of ''A'', IB is proper and for each maximal ideal \mathfrak n of ''B'', \mathfrak n \cap A is maximal # for each maximal ideal \mathfrak m and \mathfrak m-primary ideal Q of A, \operatorname_B (B/ Q B) is finite and moreover #:\operatorname_B (B/ Q B) = \operatorname_B (B/ \mathfrak B) \operatorname_A(A/Q). Given commutative rings A \subset B such that B dominates A and for each maximal ideal \mathfrak m of A such that \operatorname_B (B/ \mathfrak B) is finite, the natural inclusion A \to B is a faithfully flat ring homomorphism In algebra, a flat module over a ring ''R'' is an ''R''-module ''M'' such that taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact seq ... if and only if the theorem of transition holds between A \sub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faithfully Flat Ring Homomorphism
In algebra, a flat module over a ring ''R'' is an ''R''-module ''M'' such that taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper '' Géometrie Algébrique et Géométrie Analytique''. See also flat morphism. Definition A module over a ring is ''flat'' if the following condition is satisfied: for every injective linear map \varphi: K \to L of -modules, the map :\varphi \otimes_R M: K \otimes_R M \to L \otimes_R M is also injective, where \varphi \otimes_R M is the map induced by k \otimes m \mapsto \varphi(k) \otimes m. For this definition, it is enough to restrict the injections \varphi to the inclusions of finitely generated ideals into . Equivalently, an -module is flat if the tensor product with is an exact functor; that is if, for every short exact sequence of - ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |