Tensorial Strength
In category theory, a strong monad over a monoidal category (''C'', ⊗, I) is a monad (''T'', η, μ) together with a natural transformation ''t''''A,B'' : ''A'' ⊗ ''TB'' → ''T''(''A'' ⊗ ''B''), called (''tensorial'') ''strength'', such that the diagrams :, , :, and commute for every object ''A'', ''B'' and ''C'' (see Definition 3.2 in ). If the monoidal category (''C'', ⊗, I) is closed then a strong monad is the same thing as a ''C''-enriched monad. Commutative strong monads For every strong monad ''T'' on a symmetric monoidal category, a ''costrength'' natural transformation can be defined by :t'_=T(\gamma_)\circ t_\circ\gamma_ : TA\otimes B\to T(A\otimes B). A strong monad ''T'' is said to be commutative when the diagram : commutes for all objects A and B. One interesting fact about commutative strong monads is that they are "the same as" symmetric monoidal monad In category theory, a monoidal monad (T,\eta,\mu,T_,T_0) is a monad (T,\eta,\mu) on a monoidal catego ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an abstractio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monad (category Theory)
In category theory, a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a monoid in the category of endofunctors. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes and in functional programming languages, allowing languages with non-mutable states to do things such as simulate for-loops; see Monad (functional programming). Introduction and definition A monad is a certain type of endofunctor. For example, if F and G are a pair of adjoint functors, with F left adjoint to G, then the composition G \circ F is a monad. If F and G are inverse functors, the corresponding monad is the identity functor. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D , then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a morphism \eta_X : F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagram (category Theory)
In category theory, a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a ''function'' from a fixed index ''set'' to the class of ''sets''. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a ''functor'' from a fixed index ''category'' to some ''category''. The universal functor of a diagram is the diagonal functor; its right adjoint is the limit of the diagram and its left adjoint is the colimit. The natural transformation from the diagonal functor to some arbitrary diagram is called a cone. Definition Formally, a diagram of type ''J'' in a category ''C'' is a ( covariant) functor The category ''J'' is called the index category or the scheme of the diagram ''D''; the functor is sometimes called a ''J' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Monad Left Unit
Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United States, an overflow school for district kindergartners and first graders Music Albums * ''Strong'' (Anette Olzon album), 2021 * ''Strong'' (Arrested Development album), 2010 * ''Strong'' (Michelle Wright album), 2013 * ''Strong'' (Thomas Anders album), 2010 * ''Strong'' (Tracy Lawrence album), 2004 * ''Strong'', a 2000 album by Clare Quilty Songs * "Strong" (London Grammar song), 2013 * "Strong" (One Direction song), 2013 * "Strong" (Robbie Williams song), 1998 * "Strong", a song by After Forever from '' Remagine'' * "Strong", a song by Audio Adrenaline from ''Worldwide'' * "Strong", a song by LeAnn Rimes from ''Whatever We Wanna'' * "Strong", a song by London Grammar from ''If You Wait'' * "Strong", a song by Will Hoge from '' Nev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Monad Associative
Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United States, an overflow school for district kindergartners and first graders Music Albums * ''Strong'' (Anette Olzon album), 2021 * ''Strong'' (Arrested Development album), 2010 * ''Strong'' (Michelle Wright album), 2013 * ''Strong'' (Thomas Anders album), 2010 * ''Strong'' (Tracy Lawrence album), 2004 * ''Strong'', a 2000 album by Clare Quilty Songs * "Strong" (London Grammar song), 2013 * "Strong" (One Direction song), 2013 * "Strong" (Robbie Williams song), 1998 * "Strong", a song by After Forever from '' Remagine'' * "Strong", a song by Audio Adrenaline from ''Worldwide'' * "Strong", a song by LeAnn Rimes from ''Whatever We Wanna'' * "Strong", a song by London Grammar from ''If You Wait'' * "Strong", a song by Will Hoge from '' Nev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Monad Unit
Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United States, an overflow school for district kindergartners and first graders Music Albums * ''Strong'' (Anette Olzon album), 2021 * ''Strong'' (Arrested Development album), 2010 * ''Strong'' (Michelle Wright album), 2013 * ''Strong'' (Thomas Anders album), 2010 * ''Strong'' (Tracy Lawrence album), 2004 * ''Strong'', a 2000 album by Clare Quilty Songs * "Strong" (London Grammar song), 2013 * "Strong" (One Direction song), 2013 * "Strong" (Robbie Williams song), 1998 * "Strong", a song by After Forever from '' Remagine'' * "Strong", a song by Audio Adrenaline from ''Worldwide'' * "Strong", a song by LeAnn Rimes from ''Whatever We Wanna'' * "Strong", a song by London Grammar from ''If You Wait'' * "Strong", a song by Will Hoge from '' Nev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Monad Multiplication
Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United States, an overflow school for district kindergartners and first graders Music Albums * ''Strong'' (Anette Olzon album), 2021 * ''Strong'' (Arrested Development album), 2010 * ''Strong'' (Michelle Wright album), 2013 * ''Strong'' (Thomas Anders album), 2010 * ''Strong'' (Tracy Lawrence album), 2004 * ''Strong'', a 2000 album by Clare Quilty Songs * "Strong" (London Grammar song), 2013 * "Strong" (One Direction song), 2013 * "Strong" (Robbie Williams song), 1998 * "Strong", a song by After Forever from '' Remagine'' * "Strong", a song by Audio Adrenaline from ''Worldwide'' * "Strong", a song by LeAnn Rimes from ''Whatever We Wanna'' * "Strong", a song by London Grammar from ''If You Wait'' * "Strong", a song by Will Hoge from '' Nev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Monoidal Category
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoretic formulatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Monoidal Category
In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sense, naturally isomorphic to B\otimes A for all objects A and B of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field ''k,'' using the ordinary tensor product of vector spaces. Definition A symmetric monoidal category is a monoidal category (''C'', ⊗, ''I'') such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \to B \otimes A that is natural in both ''A'' and ''B'' and such that the following diagrams commute: *The unit coherence: *: *The associativity coherence: *: *The inverse law: *: In the diagrams above, ''a'', ''l'' , ''r'' are the associativity isomorphism, the left unit isomorphism, and the right un ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Monad Commutation
Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United States, an overflow school for district kindergartners and first graders Music Albums * ''Strong'' (Anette Olzon album), 2021 * ''Strong'' (Arrested Development album), 2010 * ''Strong'' (Michelle Wright album), 2013 * ''Strong'' (Thomas Anders album), 2010 * ''Strong'' (Tracy Lawrence album), 2004 * ''Strong'', a 2000 album by Clare Quilty Songs * "Strong" (London Grammar song), 2013 * "Strong" (One Direction song), 2013 * "Strong" (Robbie Williams song), 1998 * "Strong", a song by After Forever from '' Remagine'' * "Strong", a song by Audio Adrenaline from ''Worldwide'' * "Strong", a song by LeAnn Rimes from ''Whatever We Wanna'' * "Strong", a song by London Grammar from ''If You Wait'' * "Strong", a song by Will Hoge from '' Nev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |