Superadditive Set Function
   HOME
*





Superadditive Set Function
In mathematics, a superadditive set function is a set function whose value when applied to the union of two disjoint sets is greater than or equal to the sum of values of the function applied to each of the sets separately. This definition is analogous to the notion of superadditivity for real-valued functions. It is contrasted to subadditive set function. Definition Let \Omega be a set and f \colon 2^ \rightarrow \mathbb be a set function, where 2^\Omega denotes the power set of \Omega. The function ''f'' is ''superadditive'' if for any pair of disjoint subsets S,T of \Omega, we have f(S) + f(T) \leq f(S \cup T). See also * Utility functions on indivisible goods Some branches of economics and game theory deal with indivisible goods, discrete items that can be traded only as a whole. For example, in combinatorial auctions there is a finite set of items, and every agent can buy a subset of the items, but an i ... Citations {{reflist Combinatorial optimization Approximation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Function
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R and \pm \infty. A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning. Definitions If \mathcal is a family of sets over \Omega (meaning that \mathcal \subseteq \wp(\Omega) where \wp(\Omega) denotes the powerset) then a is a function \mu with domain \mathcal and codomain \infty, \infty/math> or, sometimes, the codomain is instead some vector space, as with vector measures, complex measures, and projection-valued measures. The domain is a set function may have any number properties; the commonly encountered properties and categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero (0) sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the table of mathematical symbols. Union of two sets The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, :A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot have duplicate elements, so the union of the sets and is . Multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint Sets
In mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. Generalizations This definition of disjoint sets can be extended to a family of sets \left(A_i\right)_: the family is pairwise disjoint, or mutually disjoint if A_i \cap A_j = \varnothing whenever i \neq j. Alternatively, some authors use the term disjoint to refer to this notion as well. For families the notion of pairwise disjoint or mutually disjoint is sometimes defined in a subtly different manner, in that repeated identical members are allowed: the family is pairwise disjoint if A_i \cap A_j = \varnothing whenever A_i \neq A_j (every two ''distinct'' sets in the family are disjoint).. For example, the collection of sets is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superadditivity
In mathematics, a function f is superadditive if f(x+y) \geq f(x) + f(y) for all x and y in the domain of f. Similarly, a sequence \left\, n \geq 1, is called superadditive if it satisfies the inequality a_ \geq a_n + a_m for all m and n. The term "superadditive" is also applied to functions from a boolean algebra to the real numbers where P(X \lor Y) \geq P(X) + P(Y), such as lower probabilities. Properties If f is a superadditive function, and if 0 is in its domain, then f(0) \leq 0. To see this, take the inequality at the top: f(x) \leq f(x+y) - f(y). Hence f(0) \leq f(0+y) - f(y) = 0. The negative of a superadditive function is subadditive. Fekete's lemma The major reason for the use of superadditive sequences is the following lemma due to Michael Fekete. :Lemma: (Fekete) For every superadditive sequence \left\, n \geq 1, the limit \lim a_n/n is equal to \sup a_n/n. (The limit may be positive infinity, for instance, for the sequence a_n = \log n!.) For example, f( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subadditive Set Function
In mathematics, a subadditive set function is a set function whose value, informally, has the property that the value of function on the union of two sets is at most the sum of values of the function on each of the sets. This is thematically related to the subadditivity property of real-valued functions. Definition Let \Omega be a set and f \colon 2^ \rightarrow \mathbb be a set function, where 2^\Omega denotes the power set of \Omega. The function ''f'' is ''subadditive'' if for each subset S and T of \Omega, we have f(S) + f(T) \geq f(S \cup T). Examples of subadditive functions Every non-negative submodular set function is subadditive (the family of non-negative submodular functions is strictly contained in the family of subadditive functions). The function that counts the number of sets required to cover a given set is subadditive. Let T_1, \dotsc, T_m \subseteq \Omega such that \cup_^m T_i=\Omega. Define f as the minimum number of subsets required to cover a given set. F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Utility Functions On Indivisible Goods
Some branches of economics and game theory deal with indivisible goods, discrete items that can be traded only as a whole. For example, in combinatorial auctions there is a finite set of items, and every agent can buy a subset of the items, but an item cannot be divided among two or more agents. It is usually assumed that every agent assigns subjective utility to every subset of the items. This can be represented in one of two ways: * An ordinal utility preference relation, usually marked by \succ. The fact that an agent prefers a set A to a set B is written A \succ B. If the agent only weakly prefers A (i.e. either prefers A or is indifferent between A and B) then this is written A \succeq B. * A cardinal utility function, usually denoted by u. The utility an agent gets from a set A is written u(A). Cardinal utility functions are often normalized such that u(\emptyset)=0, where \emptyset is the empty set. A cardinal utility function implies a preference relation: u(A)>u(B) implies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]