HOME
*





Structural Stability
In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact ''C''1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself. Variants of this notion apply to systems of ordinary differential equations, vector fields on smooth manifolds and flows generated by them, and diffeomorphisms. Structurally stable systems were introduced by Aleksandr Andronov and Lev Pontryagin in 1937 under the name "systèmes grossiers", or rough systems. They announced a characterization of rough systems in the plane, the Andronov–Pontryagin criterion. In this case, structurally stable systems are ''typical'', they form a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Citing Sources
A citation is a reference to a source. More precisely, a citation is an abbreviated alphanumeric expression embedded in the body of an intellectual work that denotes an entry in the bibliographic references section of the work for the purpose of acknowledging the relevance of the works of others to the topic of discussion at the spot where the citation appears. Generally, the combination of both the in-body citation and the bibliographic entry constitutes what is commonly thought of as a citation (whereas bibliographic entries by themselves are not). Citations have several important purposes. While their uses for upholding intellectual honesty and bolstering claims are typically foregrounded in teaching materials and style guides (e.g.,), correct attribution of insights to previous sources is just one of these purposes. Linguistic analysis of citation-practices has indicated that they also serve critical roles in orchestrating the state of knowledge on a particular topic, identi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, howe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Henri Poincaré
Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The Last Universalist", since he excelled in all fields of the discipline as it existed during his lifetime. As a mathematician and physicist, he made many original fundamental contributions to pure and applied mathematics, mathematical physics, and celestial mechanics. In his research on the three-body problem, Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of modern chaos theory. He is also considered to be one of the founders of the field of topology. Poincaré made clear the importance of paying attention to the invariance of laws of physics under different transformations, and was the first to present the Lorentz transformations in their modern symmetrical form. Poincaré disc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homoclinic
In mathematics, a homoclinic orbit is a trajectory of a flow of a dynamical system which joins a saddle equilibrium point to itself. More precisely, a homoclinic orbit lies in the intersection of the stable manifold and the unstable manifold of an equilibrium. Consider the continuous dynamical system described by the ODE :\dot x=f(x) Suppose there is an equilibrium at x=x_0, then a solution \Phi(t) is a homoclinic orbit if :\Phi(t)\rightarrow x_0\quad \mathrm\quad t\rightarrow\pm\infty If the phase space has three or more dimensions, then it is important to consider the topology of the unstable manifold of the saddle point. The figures show two cases. First, when the stable manifold is topologically a cylinder, and secondly, when the unstable manifold is topologically a Möbius strip; in this case the homoclinic orbit is called ''twisted''. Discrete dynamical system Homoclinic orbits and homoclinic points are defined in the same way for iterated functions, as the inters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-wandering Set
In dynamical systems and ergodic theory, the concept of a wandering set formalizes a certain idea of movement and mixing. When a dynamical system has a wandering set of non-zero measure, then the system is a dissipative system. This is the opposite of a conservative system, to which the Poincaré recurrence theorem applies. Intuitively, the connection between wandering sets and dissipation is easily understood: if a portion of the phase space "wanders away" during normal time-evolution of the system, and is never visited again, then the system is dissipative. The language of wandering sets can be used to give a precise, mathematical definition to the concept of a dissipative system. The notion of wandering sets in phase space was introduced by Birkhoff in 1927. Wandering points A common, discrete-time definition of wandering sets starts with a map f:X\to X of a topological space ''X''. A point x\in X is said to be a wandering point if there is a neighbourhood ''U'' of ''x'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Cycle
In mathematics, in the study of dynamical systems with two-dimensional phase space, a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches infinity or as time approaches negative infinity. Such behavior is exhibited in some nonlinear systems. Limit cycles have been used to model the behavior of a great many real-world oscillatory systems. The study of limit cycles was initiated by Henri Poincaré (1854–1912). Definition We consider a two-dimensional dynamical system of the form x'(t)=V(x(t)) where V : \R^2 \to \R^2 is a smooth function. A ''trajectory'' of this system is some smooth function x(t) with values in \mathbb^2 which satisfies this differential equation. Such a trajectory is called ''closed'' (or ''periodic'') if it is not constant but returns to its starting point, i.e. if there exists some t_0>0 such that x(t + t_0) = x(t) for all t \in \R. An orbit is the image of a t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Equilibrium Point
In the study of dynamical systems, a hyperbolic equilibrium point or hyperbolic fixed point is a fixed point that does not have any center manifolds. Near a hyperbolic point the orbits of a two-dimensional, non-dissipative system resemble hyperbolas. This fails to hold in general. Strogatz notes that "hyperbolic is an unfortunate name—it sounds like it should mean ' saddle point'—but it has become standard." Several properties hold about a neighborhood of a hyperbolic point, notably * A stable manifold and an unstable manifold exist, * Shadowing occurs, * The dynamics on the invariant set can be represented via symbolic dynamics, * A natural measure can be defined, * The system is structurally stable. Maps If T \colon \mathbb^ \to \mathbb^ is a ''C''1 map and ''p'' is a fixed point then ''p'' is said to be a hyperbolic fixed point when the Jacobian matrix \operatorname T (p) has no eigenvalues on the unit circle. One example of a map whose only fixed point is hyper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Two-sphere
A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the centre of the sphere, and is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental object in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings. Basic terminology As mentioned earlier is the sph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological Conjugacy
In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially. To illustrate this directly: suppose that f and g are iterated functions, and there exists a homeomorphism h such that :g = h^ \circ f \circ h, so that f and g are topologically conjugate. Then one must have :g^n = h^ \circ f^n \circ h, and so the iterated systems are topologically conjugate as well. Here, \circ denotes function composition. Definition f\colon X \to X, g\colon Y \to Y, and h\colon Y \to X are continuous functions on topological spaces, X and Y. f being topologically semiconjugate to g means, by definition, that h is a surjection such t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topologically Equivalent
In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially. To illustrate this directly: suppose that f and g are iterated functions, and there exists a homeomorphism h such that :g = h^ \circ f \circ h, so that f and g are topologically conjugate. Then one must have :g^n = h^ \circ f^n \circ h, and so the iterated systems are topologically conjugate as well. Here, \circ denotes function composition. Definition f\colon X \to X, g\colon Y \to Y, and h\colon Y \to X are continuous functions on topological spaces, X and Y. f being topologically semiconjugate to g means, by definition, that h is a surjection su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]