Star Height
   HOME
*



picture info

Star Height
In theoretical computer science, more precisely in the theory of formal languages, the star height is a measure for the structural complexity of regular expressions and regular languages. The star height of a regular ''expression'' equals the maximum nesting depth of stars appearing in that expression. The star height of a regular ''language'' is the least star height of any regular expression for that language. The concept of star height was first defined and studied by Eggan (1963). Formal definition More formally, the star height of a regular expression ''E'' over a finite alphabet ''A'' is inductively defined as follows: * \textstyle h\left(\emptyset\right)\,=\,0, \textstyle h\left(\varepsilon\right)\,=\,0, and \textstyle h\left(a\right)\,=\,0 for all alphabet symbols ''a'' in ''A''. * \textstyle h\left(E F\right)\,=\, h\left(E\, \mid\, F\right)\,=\,\max \left(\, h(E), h(F)\,\right) * \textstyle h\left(E^*\right)\,=\,h(E)+1. Here, \scriptstyle \emptyset is the special regular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Computer Science
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's ACM SIGACT, Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Input Symbol
In formal language theory, an alphabet is a non-empty set of symbols/glyphs, typically thought of as representing letters, characters, or digits but among other possibilities the "symbols" could also be a set of phonemes (sound units). Alphabets in this technical sense of a set are used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and depending on its purpose maybe be finite (e.g., the alphabet of letters "a" through "z"), countable (e.g., \), or even uncountable (e.g., \). Strings, also known as "words", over an alphabet are defined as a sequence of the symbols from the alphabet set. For example, the alphabet of lowercase letters "a" through "z" can be used to form English words like "iceberg" while the alphabet of both upper and lower case letters can also be used to form proper names like "Wikipedia". A common alphabet is , the binary alphabet, and a "00101111" is an example of a binary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theory Of Computing Systems
''Theory of Computing Systems'' is a peer-reviewed scientific journal published by Springer Verlag. Published since 1967 as ''Mathematical Systems Theory'' and since volume 30 in 1997 under its current title, it is devoted to publishing original research from all areas of theoretical computer science, such as computational complexity, algorithms and data structures, or parallel and distributed algorithms and architectures. It is published 8 times per year since 2018, although the frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ... varied in the past. References External links * Computer science journals Theoretical computer science Springer Science+Business Media academic journals 8 times per year journals {{Computer-science-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Star Height Problem
The generalized star-height problem in formal language theory is the open question whether all regular languages can be expressed using generalized regular expressions with a limited nesting depth of Kleene stars. Here, generalized regular expressions are defined like regular expressions, but they have a built-in complement operator. For a regular language, its generalized star height is defined as the minimum nesting depth of Kleene stars needed in order to describe the language by means of a generalized regular expression, hence the name of the problem. More specifically, it is an open question whether a nesting depth of more than 1 is required, and if so, whether there is an algorithm to determine the minimum required star height.Sakarovitch (2009) p.171 Regular languages of star-height 0 are also known as star-free languages. The theorem of Schützenberger provides an algebraic characterization of star-free languages by means of aperiodic syntactic monoids. In particular st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star Height Problem
The star height problem in formal language theory is the question whether all regular languages can be expressed using regular expressions of limited star height, i.e. with a limited nesting depth of Kleene stars. Specifically, is a nesting depth of one always sufficient? If not, is there an algorithm to determine how many are required? The problem was raised by . Families of regular languages with unbounded star height The first question was answered in the negative when in 1963, Eggan gave examples of regular languages of star height ''n'' for every ''n''. Here, the star height ''h''(''L'') of a regular language ''L'' is defined as the minimum star height among all regular expressions representing ''L''. The first few languages found by are described in the following, by means of giving a regular expression for each language: :\begin e_1 &= a_1^* \\ e_2 &= \left(a_1^*a_2^*a_3\right)^*\\ e_3 &= \left(\left(a_1^*a_2^*a_3\right)^*\left(a_4^*a_5^*a_6\right)^*a_7\right)^*\\ e_4 &= ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Aperiodic Monoid
In mathematics, an aperiodic semigroup is a semigroup ''S'' such that every element ''x'' ∈ ''S'' is aperiodic, that is, for each ''x'' there exists a positive integer ''n'' such that ''x''''n'' = ''x''''n'' + 1. An aperiodic monoid is an aperiodic semigroup which is a monoid. Finite aperiodic semigroups A finite semigroup is aperiodic if and only if it contains no nontrivial subgroups, so a synonym used (only?) in such contexts is group-free semigroup. In terms of Green's relations, a finite semigroup is aperiodic if and only if its ''H''-relation is trivial. These two characterizations extend to group-bound semigroups. A celebrated result of algebraic automata theory due to Marcel-Paul Schützenberger asserts that a language is star-free if and only if its syntactic monoid is finite and aperiodic.Schützenberger, Marcel-Paul, "On finite monoids having only trivial subgroups," ''Information and Control'', Vol 8 No. 2, pp. 190–194, 1965. A consequence of the Krohn–Rhodes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syntactic Monoid
In mathematics and computer science, the syntactic monoid M(L) of a formal language L is the smallest monoid that recognizes the language L. Syntactic quotient The free monoid on a given set is the monoid whose elements are all the strings of zero or more elements from that set, with string concatenation as the monoid operation and the empty string as the identity element. Given a subset S of a free monoid M, one may define sets that consist of formal left or right inverses of elements in S. These are called quotients, and one may define right or left quotients, depending on which side one is concatenating. Thus, the right quotient of S by an element m from M is the set :S \ / \ m=\. Similarly, the left quotient is :m \setminus S=\. Syntactic equivalence The syntactic quotient induces an equivalence relation on M, called the syntactic relation, or syntactic equivalence (induced by S). The ''right syntactic equivalence'' is the equivalence relation :s \sim_S t \ \Leftrighta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star-free Language
A regular language is said to be star-free if it can be described by a regular expression constructed from the letters of the alphabet, the empty set symbol, all boolean operators – including complementation – and concatenation but no Kleene star.Lawson (2004) p.235 For instance, the language of words over the alphabet \ that do not have consecutive a's can be defined by (\emptyset^c aa \emptyset^c)^c, where X^c denotes the complement of a subset X of \^*. The condition is equivalent to having generalized star height zero. An example of a regular language which is not star-free is \, i.e. the language of strings consisting of an even number of "a". Marcel-Paul Schützenberger characterized star-free languages as those with aperiodic syntactic monoids.Lawson (2004) p.262 They can also be characterized logically as languages definable in FO the first-order logic over the natural numbers with the less-than relation, as the counter-free languages and as languages defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Complement
In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^\complement = U \setminus A. Or formally: A^\complement = \. The absolute complement of is u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleene Star
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V is written as ''V^*''. It is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more repetitions". # If V is a set of strings, then ''V^*'' is defined as the smallest superset of V that contains the empty string \varepsilon and is closed under the string concatenation operation. # If V is a set of symbols or characters, then ''V^*'' is the set of all strings over symbols in V, including the empty string \varepsilon. The set ''V^*'' can also be described as the set containing the empty string and all finite-length strings that can be generated by concatenating arbitrary e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Union
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero (0) sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the table of mathematical symbols. Union of two sets The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, :A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]