Split-octonion
   HOME
*



picture info

Split-octonion
In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: the split-octonions have a split signature (4,4) whereas the octonions have a positive-definite signature (8,0). Up to isomorphism, the octonions and the split-octonions are the only two 8-dimensional composition algebras over the real numbers. They are also the only two octonion algebras over the real numbers. Split-octonion algebras analogous to the split-octonions can be defined over any field. Definition Cayley–Dickson construction The octonions and the split-octonions can be obtained from the Cayley–Dickson construction by defining a multiplication on pairs of quaternions. We introduce a new imaginary unit ℓ and write a pair of quaternions (''a'', ''b'') in the form ''a'' + ℓ''b''. The product is defined by the rule: :(a + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Max Zorn
Max August Zorn (; June 6, 1906 – March 9, 1993) was a German mathematician. He was an algebraist, group theorist, and numerical analyst. He is best known for Zorn's lemma, a method used in set theory that is applicable to a wide range of mathematical constructs such as vector spaces, and ordered sets amongst others. Zorn's lemma was first postulated by Kazimierz Kuratowski in 1922, and then independently by Zorn in 1935. Life and career Zorn was born in Krefeld, Germany. He attended the University of Hamburg. He received his PhD in April 1930 for a thesis on alternative algebras. He published his findings in ''Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg''. Zorn showed that split-octonions could be represented by a mixed-style of matrices called Zorn's vector-matrix algebra. Max Zorn was appointed to an assistant position at the University of Halle. However, he did not have the opportunity to work there for long as he was forced to leave German ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cayley–Dickson Construction
In mathematics, the Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics. The Cayley–Dickson construction defines a new algebra as a Cartesian product of an algebra with itself, with multiplication defined in a specific way (different from the componentwise multiplication) and an involution known as conjugation. The product of an element and its conjugate (or sometimes the square root of this product) is called the norm. The symmetries of the real field disappear as the Cayley–Dickson construction is repeatedly applied: first losing order, then commutativity of multiplication, associativity of multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Max August Zorn
Max August Zorn (; June 6, 1906 – March 9, 1993) was a German mathematician. He was an algebraist, group theorist, and numerical analyst. He is best known for Zorn's lemma, a method used in set theory that is applicable to a wide range of mathematical constructs such as vector spaces, and ordered sets amongst others. Zorn's lemma was first postulated by Kazimierz Kuratowski in 1922, and then independently by Zorn in 1935. Life and career Zorn was born in Krefeld, Germany. He attended the University of Hamburg. He received his PhD in April 1930 for a thesis on alternative algebras. He published his findings in '' Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg''. Zorn showed that split-octonions could be represented by a mixed-style of matrices called Zorn's vector-matrix algebra. Max Zorn was appointed to an assistant position at the University of Halle. However, he did not have the opportunity to work there for long as he was forced to leave Germ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octonion
In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative. Octonions are not as well known as the quaternions and complex numbers, which are much more widely studied and used. Octonions are related to exceptional structures in mathematics, among them the exceptional Lie groups. Octonions have applications in fields such as string theory, special relativity and quantum logic. Applying the Cayley–Dickson construction to the octonions produces the sedenions. History The octonions were discovered in 1843 by John T. Graves, inspired by his f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Split-quaternion
In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers. After introduction in the 20th century of coordinate-free definitions of rings and algebras, it has been proved that the algebra of split-quaternions is isomorphic to the ring of the real matrices. So the study of split-quaternions can be reduced to the study of real matrices, and this may explain why there are few mentions of split-quaternions in the mathematical literature of the 20th and 21st centuries. Definition The ''split-quaternions'' are the linear combinations (with real coefficients) of four basis elements that satisfy the following product rules: :, :, :, :. By associativity, these relations imply :, :, and also . So, the split-quaternions form a real vector space of dimension four with as a basis. They form also a noncommutative ring, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-Euclidean Space
In mathematics and theoretical physics, a pseudo-Euclidean space is a finite-dimensional real -space together with a non- degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vector , giving q(x) = \left(x_1^2 + \dots + x_k^2\right) - \left( x_^2 + \dots + x_n^2\right) which is called the ''scalar square'' of the vector . For Euclidean spaces, , implying that the quadratic form is positive-definite. When , is an isotropic quadratic form, otherwise it is ''anisotropic''. Note that if , then , so that is a null vector. In a pseudo-Euclidean space with , unlike in a Euclidean space, there exist vectors with negative scalar square. As with the term ''Euclidean space'', the term ''pseudo-Euclidean space'' may be used to refer to an affine space or a vector space depending on the author, with the latter alternatively being referred to as a pseudo-Euclidean vector space (see point–vector distinction). Geometry The geometry of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplicative Inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1). The term ''reciproc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moufang Identities
Moufang is the family name of the following people: *Christoph Moufang (1817–1890), a Roman Catholic cleric *Ruth Moufang (1905–1977), a German mathematician, after whom several concepts in mathematics are named: ** Moufang–Lie algebra ** Moufang loop ** Moufang polygon ** Moufang plane In geometry, a Moufang plane, named for Ruth Moufang, is a type of projective plane, more specifically a special type of translation plane. A translation plane is a projective plane that has a ''translation line'', that is, a line with the proper ... * David Moufang (born 1966), German ambient techno musician {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternative Algebra
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx) for all ''x'' and ''y'' in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. The associator Alternative algebras are so named because they are the algebras for which the associator is alternating. The associator is a trilinear map given by : ,y,z= (xy)z - x(yz). By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal. The left and right alternative identities for an algebra are equivalent toSchafer (1995) p. 27 : ,x,y= 0 : ,x,x= 0. Both of these identities together imply that : ,y,x= , x, x+ , y, x- , x+y, x+y= , x+y, -y= , x, -y- , y, y= 0 for all x and y. This is equivalent to the '' flexible identity''Schafer (1995) p. 28 :(xy)x = x(yx). The associator of an alte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moufang Loop
Moufang is the family name of the following people: * Christoph Moufang (1817–1890), a Roman Catholic cleric * Ruth Moufang (1905–1977), a German mathematician, after whom several concepts in mathematics are named: ** Moufang–Lie algebra ** Moufang loop ** Moufang polygon ** Moufang plane * David Moufang (born 1966), German ambient techno musician {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin's Theorem
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx) for all ''x'' and ''y'' in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. The associator Alternative algebras are so named because they are the algebras for which the associator is alternating. The associator is a trilinear map given by : ,y,z= (xy)z - x(yz). By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal. The left and right alternative identities for an algebra are equivalent toSchafer (1995) p. 27 : ,x,y= 0 : ,x,x= 0. Both of these identities together imply that : ,y,x= , x, x+ , y, x- , x+y, x+y= , x+y, -y= , x, -y- , y, y= 0 for all x and y. This is equivalent to the ''flexible identity''Schafer (1995) p. 28 :(xy)x = x(yx). The associator of an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Levi-Civita Symbol
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the parity of a permutation, sign of a permutation of the natural numbers , for some positive integer . It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric tensor, antisymmetric property and definition in terms of permutations. The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon or , or less commonly the Latin lower case . Index notation allows one to display permutations in a way compatible with tensor analysis: \varepsilon_ where ''each'' index takes values . There are indexed values of , which can be arranged into an -dimensional array. The key defining property of the symbol is ''total antisymmetry'' in the ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]