Specializing Compiler
   HOME
*





Specializing Compiler
In computer science, run-time algorithm specialization is a methodology for creating efficient algorithms for costly computation tasks of certain kinds. The methodology originates in the field of automated theorem proving and, more specifically, in the Vampire theorem prover project. The idea is inspired by the use of partial evaluation in optimising program translation. Many core operations in theorem provers exhibit the following pattern. Suppose that we need to execute some algorithm \mathit(A,B) in a situation where a value of A ''is fixed for potentially many different values of'' B. In order to do this efficiently, we can try to find a specialization of \mathit for every fixed A, i.e., such an algorithm \mathit_A, that executing \mathit_A(B) is equivalent to executing \mathit(A,B). The specialized algorithm may be more efficient than the generic one, since it can ''exploit some particular properties'' of the fixed value A. Typically, \mathit_A(B) can avoid some operations tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automated Theorem Proving
Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science. Logical foundations While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics. Frege's ''Begriffsschrift'' (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic. His ''Foundations of Arithmetic'', published 1884, expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential ''Principia Mathematica'', first published 1910–1913, and with a revised second edition in 1927. Russell and Whitehead thought they could derive all mathematical truth using axioms and inference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vampire Theorem Prover
Vampire is an automatic theorem prover for first-order classical logic developed in the Department of Computer Science at the University of Manchester. Up to Version 3, it was developed by Andrei Voronkov together with Kryštof Hoder and previously with Alexandre Riazanov. Since Version 4, the development has involved a wider international team including Laura Kovacs, Giles Reger, and Martin Suda. Since 1999 it has won at least 53 trophies in the CADE ATP System Competition, the "world cup for theorem provers", including the most prestigious FOF division and the theory-reasoning TFA division. Background Vampire's kernel implements the calculi of ordered binary resolution and superposition for handling equality. The splitting rule and negative equality splitting can be simulated by the introduction of new predicate definitions and dynamic folding of such definitions. A DPLL-style algorithm splitting is also supported. A number of standard redundancy criteria and simplification ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Evaluation
In computing, partial evaluation is a technique for several different types of program optimization by specialization. The most straightforward application is to produce new programs that run faster than the originals while being guaranteed to behave in the same way. A computer program ''prog'' is seen as a mapping of input data into output data: : prog : I_\text \times I_\text \to O, where I_\text, the ''static data'', is the part of the input data known at compile time. The partial evaluator transforms \langle prog, I_\text\rangle into prog^* : I_\text \to O by precomputing all static input at compile time. prog^* is called the "residual program" and should run more efficiently than the original program. The act of partial evaluation is said to "residualize" prog to prog^*. Futamura projections A particularly interesting example of the use of partial evaluation, first described in the 1970s by Yoshihiko Futamura, is when ''prog'' is an interpreter for a programming languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Machine
An abstract machine is a computer science theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is analogous to a mathematical function in that it receives inputs and produces outputs based on predefined rules. Abstract machines vary from literal machines in that they are expected to perform correctly and independently of hardware. Abstract machines are “machines” because they allow step-by-step execution of programmes; they are “ abstract” because they ignore many aspects of actual ( hardware) machines. A typical abstract machine consists of a definition in terms of input, output, and the set of allowable operations used to turn the former into the latter. They can be used for purely theoretical reasons as well as models for real-world computer systems. In the theory of computation, abstract machines are often used in thought experiments regarding computability or to analyse the complexity of algorithms. This use of abstr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

C (programming Language)
C (''pronounced like the letter c'') is a General-purpose language, general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems. A successor to the programming language B (programming language), B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the measuring programming language popularity, most widely used programming languages, with C compilers avail ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Psyco
Psyco is an unmaintained specializing just-in-time compiler for pre-2.7 Python originally developed by Armin Rigo and further maintained and developed by Christian Tismer. Development ceased in December, 2011. Psyco ran on BSD-derived operating systems, Linux, Mac OS X and Microsoft Windows using 32-bit Intel-compatible processors. Psyco was written in C and generated only 32-bit x86-based code. Although Tismer announced on 17 July 2009 that work was being done on a second version of Psyco, a further announcement declared the project "unmaintained and dead" on 12 March 2012 and pointed visitors to PyPy instead. Unlike Psyco, PyPy incorporates an interpreter and a compiler that can generate C, improving its cross-platform compatibility over Psyco. Speed enhancement Psyco can noticeably speed up CPU-bound applications. The actual performance depends greatly on the application and varies from a slight slowdown to a 100x speedup. The average speed improvement is typically in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Python (programming Language)
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is dynamically-typed and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library. Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0. Python 2.0 was released in 2000 and introduced new features such as list comprehensions, cycle-detecting garbage collection, reference counting, and Unicode support. Python 3.0, released in 2008, was a major revision that is not completely backward-compatible with earlier versions. Python 2 was discontinued with version 2.7.18 in 2020. Python consistently ranks as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multi-stage Programming
Multi-stage programming (MSP) is a variety of metaprogramming in which compilation is divided into a series of intermediate phases, allowing typesafe run-time code generation. Statically defined types are used to verify that dynamically constructed types are valid and do not violate the type system. In MSP languages, expressions are qualified by notation that specifies the phase at which they are to be evaluated. By allowing the specialization of a program at run-time, MSP can optimize the performance of programs: it can be considered as a form of partial evaluation that performs computations at compile-time as a trade-off to increase the speed of run-time processing. Multi-stage programming languages support constructs similar to the Lisp construct of quotation and eval, except that scoping In computer programming, the scope of a name binding (an association of a name to an entity, such as a variable) is the part of a program where the name binding is valid; that is, where the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithms
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]