Small Angle Neutron Scattering
   HOME
*





Small Angle Neutron Scattering
Small-angle neutron scattering (SANS) is an experimental technique that uses elastic neutron scattering at small scattering angles to investigate the structure of various substances at a mesoscopic scale of about 1–100 nm. Small angle neutron scattering is in many respects very similar to small-angle X-ray scattering (SAXS); both techniques are jointly referred to as small-angle scattering (SAS). Advantages of SANS over SAXS are its sensitivity to light elements, the possibility of isotope labelling, and the strong scattering by magnetic moments. Technique During a SANS experiment a beam of neutrons is directed at a sample, which can be an aqueous solution, a solid, a powder, or a crystal. The neutrons are elastically scattered by nuclear interaction with the nuclei or interaction with magnetic momentum of unpaired electrons. In X-ray scattering, photons interact with the electronic cloud so the bigger the element, the bigger the effect is. In neutron scattering, neutron ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytical Technique
Analytical technique is a method used to determine a chemical or physical property of a chemical substance, chemical element, or mixture. There is a wide variety of techniques used for analysis, from simple weighing to advanced techniques using highly specialized instrumentation. Classical methods of analysis Classical analysis methods involve basic analytical methods widely used in laboratories. Gravimetric analysis measures the weight of the sample. Titration, Titrimetry is a technique used to determine the concentration of the analyte. Spectrochemical analysis Spectrometer can determine chemical composition through its measure of spectrums. The common spectrometer used in analytical chemistry is Mass spectrometry. In a mass spectrometer, a small amount of sample is ionized and converted to gaseous ions, where they are separated and analyzed according to their Mass-to-charge ratio, mass-to-charge ratios. Electroanalytical analysis Electroanalytical method, Electroanalytical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutron Spin Echo
Neutron spin echo spectroscopy is an inelastic neutron scattering technique invented by Ferenc Mezei in the 1970s, and developed in collaboration with John Hayter. In recognition of his work and in other areas, Mezei was awarded the first Walter Haelg Prize in 1999. In magnetic resonance, a spin echo is the refocusing of spin magnetisation by a pulse of resonant electromagnetic radiation. The spin echo spectrometer possesses an extremely high energy resolution (roughly one part in 100,000). Additionally, it measures the density-density correlation (or intermediate scattering function) F(Q,t) as a function of momentum transfer Q and time. Other neutron scattering techniques measure the dynamic structure factor S(Q,ω), which can be converted to F(Q,t) by a Fourier transform, which may be difficult in practice. For weak inelastic features S(Q,ω) is better suited, however, for (slow) relaxations the natural representation is given by F(Q,t). Because of its extraordina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Julia Higgins
Dame Julia Stretton Higgins (née Downes; born 1 July 1942) is a British polymer scientist. Since 1976 she has been based at the Department of Chemical Engineering at Imperial College London, where (since 2007) she is professor and senior research investigator. Education Higgins was educated at the Ursuline High School, Wimbledon and Somerville College, Oxford where she was awarded Master of Arts and DPhil degrees. Career In 1999, Higgins was elected a member of the National Academy of Engineering for the application of neutron scattering and reflectivity to polymeric materials, and for service to the scientific community. Higgins chaired the Advisory Committee on Mathematics Education (ACME) from 2008–2012. She is also a former chair (1998–2003) of the Athena Project, which aims for the advancement of women in science, engineering and technology (SET) in Higher Education. Between 2003 and 2007, she was also chair of the Engineering and Physical Sciences Research Cou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neutron Microscope
Neutron microscopes use neutrons to create images by nuclear fission of lithium-6 using small-angle neutron scattering. Neutrons also have no electric charge, enabling them to penetrate substances to gain information about structure that is not accessible through other forms of microscopy. As of 2013, neutron microscopes offered four-fold magnification and 10-20 times better illumination than pinhole neutron cameras. The system increases the signal rate at least 50-fold. Neutrons interact with nucleus (physics), atomic nuclei via the strong force. This interaction can scatter neutrons from their original path and can also absorb them. Thus, a Neutron#Neutron beams and modification of beams after production, neutron beam becomes progressively less intense as it moves deeper within a substance. In this way, neutrons are analogous to x-rays for studying object interiors. Darkness in an x-ray image corresponds to the amount of matter the x-rays pass through. The density of a neutron im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spallation
Spallation is a process in which fragments of material (spall) are ejected from a body due to impact or stress. In the context of impact mechanics it describes ejection of material from a target during impact by a projectile. In planetary physics, spallation describes meteoritic impacts on a planetary surface and the effects of stellar winds and cosmic rays on planetary atmospheres and surfaces. In the context of mining or geology, spallation can refer to pieces of rock breaking off a rock face due to the internal stresses in the rock; it commonly occurs on mine shaft walls. In the context of anthropology, spallation is a process used to make stone tools such as arrowheads by knapping. In nuclear physics, spallation is the process in which a heavy nucleus emits numerous nucleons as a result of being hit by a high-energy particle, thus greatly reducing its atomic weight. In industrial processes and bioprocessing the loss of tubing material due to the repeated flexing of the tu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Research Reactor
Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion. Purpose The neutrons produced by a research reactor are used for neutron scattering, non-destructive testing, analysis and testing of materials, production of radioisotopes, research and public outreach and education. Research reactors that produce radioisotopes for medical or industrial use are sometimes called isotope reactors. Reactors that are optimised for beamline experiments nowadays compete with spallation sources. Technical aspects Research reactors are simpler than power reactors and operate at lower temperatures. They need far less fuel, and far less fission products build up as the fuel is used. On the other hand, their fuel requires more highly enriched uranium, typically up to 20% U-235, although some use 93 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solvent
A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell. The quantity of solute that can dissolve in a specific volume of solvent varies with temperature. Major uses of solvents are in paints, paint removers, inks, and dry cleaning. Specific uses for organic solvents are in dry cleaning (e.g. tetrachloroethylene); as paint thinners (toluene, turpentine); as nail polish removers and solvents of glue (acetone, methyl acetate, ethyl acetate); in spot removers (hexane, petrol ether); in detergents ( citrus terpenes); and in perfumes (ethanol). Solvents find various applications in chemical, pharmaceutical, oil, and gas industries, including in chemical syn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent). It is vital for all known forms of life, despite not providing food, energy or organic micronutrients. Its chemical formula, H2O, indicates that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. The hydrogen atoms are attached to the oxygen atom at an angle of 104.45°. "Water" is also the name of the liquid state of H2O at standard temperature and pressure. A number of natural states of water exist. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds consist of suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contrast Matching
Contrast may refer to: Science * Contrast (vision), the contradiction in form, colour and light between parts of an image * Contrast (statistics), a combination of averages whose coefficients add up to zero, or the difference between two means * Behavioral contrast, a phenomenon studied in psychology (behavior analysis) * Contrast agent, used to distinguish structures or fluids within a body, often shortened to just "contrast" Technology * Contrast ratio, a measure of a display system * Display contrast, of electronic visual displays Language * Contrast (linguistics), expressing distinctions between words * Contrast (literary), describing the difference(s) between two or more entities Arts and entertainment Music * The Contrast (band), an English pop band formed in 1999 * Contrast (music), the difference between parts or different instrumental sounds Albums * ''Contrast'' (Conor Maynard album), 2012 * ''Contrast'' (Matt Fax album), 2017 * ''Contrast'' (EP), by the Feat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neutron Reflectometry
Neutron reflectometry is a neutron diffraction technique for measuring the structure of thin films, similar to the often complementary techniques of X-ray reflectivity and ellipsometry. The technique provides valuable information over a wide variety of scientific and technological applications including chemical aggregation, polymer and surfactant adsorption, structure of thin film magnetic systems, biological membranes, etc. History Neutron reflectometery emerged as a new field in the 1980s, after the discovery of giant magnetoresistance in antiferromagnetically-coupled multilayered films. Technique The technique involves shining a highly collimated beam of neutrons onto an extremely flat surface and measuring the intensity of reflected radiation as a function of angle or neutron wavelength. The exact shape of the reflectivity profile provides detailed information about the structure of the surface, including the thickness, density, and roughness of any thin films layered on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grazing-incidence Small-angle Scattering
Grazing-incidence small-angle scattering (GISAS) is a scattering technique used to study nanostructured surfaces and thin films. The scattered probe is either photons (grazing-incidence small-angle X-ray scattering, GISAXS) or neutrons (grazing-incidence small-angle neutron scattering, GISANS). GISAS combines the accessible length scales of small-angle scattering (SAS: SAXS or SANS) and the surface sensitivity of grazing incidence diffraction (GID). Applications A typical application of GISAS is the characterisation of self-assembly and self-organization on the nanoscale in thin films. Systems studied by GISAS include quantum dot arrays, growth instabilities formed during in-situ growth, self-organized nanostructures in thin films of block copolymers, silica mesophases, and nanoparticles. GISAXS was introduced by Levine and Cohen to study the dewetting of gold deposited on a glass surface. The technique was further developed by Naudon and coworkers to study metal agglomerates on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]