Singular Function
   HOME
*





Singular Function
In mathematics, a real-valued function ''f'' on the interval 'a'', ''b''is said to be singular if it has the following properties: *''f'' is continuous on 'a'', ''b'' (**) *there exists a set ''N'' of measure 0 such that for all ''x'' outside of ''N'' the derivative ''f'' ′(''x'') exists and is zero, that is, the derivative of ''f'' vanishes almost everywhere. *''f'' is non-constant on 'a'', ''b'' A standard example of a singular function is the Cantor function, which is sometimes called the devil's staircase (a term also used for singular functions in general). There are, however, other functions that have been given that name. One is defined in terms of the circle map. If ''f''(''x'') = 0 for all ''x'' ≤ ''a'' and ''f''(''x'') = 1 for all ''x'' ≥ ''b'', then the function can be taken to represent a cumulative distribution function for a random variable which is neither a discrete random variable (since the probability is zero for each point) nor an absolutel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnet
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets. A permanent magnet is an object made from a material that is magnetized and creates its own persistent magnetic field. An everyday example is a refrigerator magnet used to hold notes on a refrigerator door. Materials that can be magnetized, which are also the ones that are strongly attracted to a magnet, are called ferromagnetic (or ferrimagnetic). These include the elements iron, nickel and cobalt and their alloys, some alloys of rare-earth metals, and some naturally occurring minerals such as lodestone. Although ferromagnetic (and ferrimagnetic) materials are the only ones attracted to a magnet strongly enough to be commonly considered magnetic, all other substances respond weakly to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Derivative
In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (''strong derivative'') for functions not assumed differentiable, but only integrable, i.e., to lie in the L''p'' space L^1( ,b. The method of integration by parts holds that for differentiable functions u and \varphi we have :\begin \int_a^b u(x) \varphi'(x) \, dx & = \Big (x) \varphi(x)\Biga^b - \int_a^b u'(x) \varphi(x) \, dx. \\ pt \end A function ''u''' being the weak derivative of ''u'' is essentially defined by the requirement that this equation must hold for all infinitely differentiable functions ''φ'' vanishing at the boundary points (\varphi(a)=\varphi(b)=0). Definition Let u be a function in the Lebesgue space L^1( ,b. We say that v in L^1( ,b is a weak derivative of u if :\int_a^b u(t)\varphi'(t) \, dt=-\int_a^b v(t)\varphi(t) \, dt for ''all'' infinitely differentiable functions \varphi with \varphi(a)=\varphi(b)=0. Generalizing to n dimensions, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Function
In mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and more contemporary developments in certain directions are closely related to ideas of Mikio Sato, on what he calls algebraic analysis. Important influences on the subject have been the technical requirements of theories of partial differential equations, and group representation theory. Some early history In the mathematics of the nineteenth century, aspects of generalized function theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE