Silver Oxide Battery
   HOME
*



picture info

Silver Oxide Battery
A silver-oxide battery (IEC code: S) is a primary cell using silver oxide as the cathode material and zinc for the anode. These cells maintain a nearly constant nominal voltage during discharge until fully depleted. They are available in small sizes as button cells, where the amount of silver used is minimal and not a prohibitively expensive contributor to the overall product cost. Silver-oxide primary batteries account for 30% of all primary battery sales in Japan (64 out of 212 million in February 2020). Silver-oxide batteries were used on Apollo program lunar missions for the lunar module and lunar rover power supplies because of their high energy-to-weight ratio.Lyons, Pete; "10 Best Ahead-of-Their-Time Machines", ''Car and Driver'', Jan. 1988, p.78 Chemistry A silver-oxide battery uses silver(I) oxide as the positive electrode (cathode), zinc as the negative electrode (anode), plus an alkaline electrolyte, usually sodium hydroxide (NaOH) or potassium hydroxide (KOH). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duracell
Duracell Inc. is an American manufacturer of alkaline batteries, specialty cells, rechargeables and smart power systems, owned by Berkshire Hathaway. The company has its origins in the 1920s, through the work of Samuel Ruben and Philip Mallory, and the formation of the P. R. Mallory Company. Through a number of corporate mergers and acquisitions, Duracell came to be owned by the consumer products conglomerate Procter & Gamble (P&G). In November 2014, P&G reached an agreement to sell the company to Berkshire Hathaway through a transfer of shares. Under the deal, Berkshire Hathaway exchanged the shares it held in P&G for ownership of the Duracell business. History Origins Duracell originated via the partnership of scientist Samuel Ruben and businessman Philip Rogers Mallory, who met during the 1920s. The P. R. Mallory Company of Burlington, Massachusetts, United States, relocated its headquarters to Indianapolis, Indiana, in 1924. The company produced mercury batteries fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Potassium Hydroxide
Potassium hydroxide is an inorganic compound with the formula K OH, and is commonly called caustic potash. Along with sodium hydroxide (NaOH), KOH is a prototypical strong base. It has many industrial and niche applications, most of which exploit its caustic nature and its reactivity toward acids. An estimated 700,000 to 800,000 tonnes were produced in 2005. KOH is noteworthy as the precursor to most soft and liquid soaps, as well as numerous potassium-containing chemicals. It is a white solid that is dangerously corrosive. Properties and structure KOH exhibits high thermal stability. Because of this high stability and relatively low melting point, it is often melt-cast as pellets or rods, forms that have low surface area and convenient handling properties. These pellets become tacky in air because KOH is hygroscopic. Most commercial samples are ca. 90% pure, the remainder being water and carbonates. Its dissolution in water is strongly exothermic. Concentrated aqueous solut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Battery Sizes
This is a list of the sizes, shapes, and general characteristics of some common primary and secondary list of battery types, battery types in household, automotive and light industrial use. The complete nomenclature for a battery specifies size, chemistry, terminal arrangement, and special characteristics. The same physically interchangeable cell size or battery size may have widely different characteristics; physical interchangeability is not the sole factor in substituting a battery. The full battery designation identifies not only the size, shape and terminal layout of the battery but also the chemistry (and therefore the voltage per cell) and the number of cells in the battery. For example, a CR123 battery is always LiMnO2 ('Lithium') chemistry, in addition to its unique size. The following tables give the common battery chemistry types for the current common sizes of batteries. See Electric battery#Comparison, Battery chemistry for a list of other electrochemical systems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of The Battery
Batteries provided the primary source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices. Students and engineers developed several commercially important types of battery. "Wet cells" were open containers that held liquid electrolyte and metallic electrodes. When the electrodes were completely consumed, the wet cell was renewed by replacing the electrodes and electrolyte. Open containers are unsuitable for mobile or portable use. Wet cells were used commercially in the telegraph and telephone systems. Early electric cars used semi-sealed wet cells. One important classification for batteries is by their life cycle. "Primary" batteries can produce cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fuel Cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied. The first fuel cells were invented by Sir William Grove in 1838. The first commercial use of fuel cells came more than a century later following the invention of the hydrogen–oxygen fuel cell by Francis Thomas Bacon in 1932. The alkaline fuel cell, also known as the Bacon fuel cell after its inventor, has been used in NASA space programs since the mid-1960s to generate power for satellites and space capsules. Since then, fuel cells have b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Comparison Of Battery Types
This is a list of commercially-available battery types summarizing some of their characteristics for ready comparison. Common characteristics Cost in USD, adjusted for inflation. Typical. See for alternative electrode materials. Rechargeable characteristics Thermal runaway Under certain conditions, some battery chemistries are at risk of thermal runaway, leading to cell rupture or combustion. As thermal runaway is determined not only by cell chemistry but also cell size, cell design and charge, only the worst-case values are reflected here. NiCd vs. NiMH vs. Li-ion vs. Li–polymer vs. LTO See also * Battery nomenclature * Experimental rechargeable battery types * Aluminium battery * List of battery sizes * List of battery types This list is a summary of notable electric battery types composed of one or more electrochemical cells. Three lists are provided in the table. The primary (non-rechargeable) and secondary (rechargeable) cell lists are lists of battery c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Battery Recycling
Battery recycling is a recycling activity that aims to reduce the number of batteries being disposed as municipal solid waste. Batteries contain a number of heavy metals and toxic chemicals and disposing of them by the same process as regular household waste has raised concerns over soil contamination and water pollution. Battery recycling by type Most types of batteries can be recycled. However, some batteries are recycled more readily than others, such as lead–acid automotive batteries (nearly 90% are recycled) and button cells (because of the value and toxicity of their chemicals). Rechargeable nickel–cadmium (Ni-Cd), nickel metal hydride (Ni-MH), lithium-ion (Li-ion) and nickel–zinc (Ni-Zn), can also be recycled. Disposable alkaline batteries make up the vast majority of consumer battery use, but there is currently no cost-neutral recycling option. Consumer disposal guidelines vary by region. An evaluation of consumer alkaline battery recycling in Europe showed envi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Battery Nomenclature
Standard battery nomenclature describes portable dry cell batteries that have physical dimensions and electrical characteristics interchangeable between manufacturers. The long history of disposable dry cells means that many manufacturer-specific and national standards were used to designate sizes, long before international standards were reached. Technical standards for battery sizes and types are set by standards organizations such as International Electrotechnical Commission (IEC) and American National Standards Institute (ANSI). Popular sizes are still referred to by old standard or manufacturer designations, and some non-systematic designations have been included in current international standards due to wide use. The complete nomenclature for the battery will fully specify the size, chemistry, terminal arrangements, and special characteristics of a battery. The same physically interchangeable cell size may have widely different characteristics; physical interchangeability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mercury (element)
Mercury is a chemical element with the symbol Hg and atomic number 80. It is also known as quicksilver and was formerly named hydrargyrum ( ) from the Greek words, ''hydor'' (water) and ''argyros'' (silver). A heavy, silvery d-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ... element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature. Mercury occurs in deposits throughout the world mostly as cinnabar (mercuric sulfide). The red pigment vermilion is obtained by Mill (grinding), grinding natural cinnabar or synthetic mercuric sulfide. Mercury is used in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Miyota Caliber 6S21 Quartz Chronograph Movement
is a town located in Nagano Prefecture, Japan. , the town had an estimated population of 15,562 in 6897 households, and a population density of 260 persons per km². The total area of the town is . Geography Miyota is located on the eastern border of Nagano Prefecture with Gumma Prefecture. Mount Asama (2568 meters) is within the town's northern borders. The Citizen Watch group has other engineering facilities in the adjacent town of Saku, Nagano. Surrounding municipalities *Nagano Prefecture ** Komoro **Karuizawa **Saku *Gumma Prefecture ** Tsumagoi Climate The town has a humid continental climate characterized by warm and humid summers, and cold winters with heavy snowfall (Köppen climate classification ''Dfb''). The average annual temperature in Miyota is 8.2 °C. The average annual rainfall is 1291 mm with September as the wettest month. The temperatures are highest on average in August, at around 21.1 °C, and lowest in January, at around -4.0 ° ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Half-cell Reaction
A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. Often, the concept of half reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half reactions can be written to describe both the metal undergoing oxidation (known as the anode) and the metal undergoing reduction (known as the cathode). Half reactions are often used as a method of balancing redox reactions. For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H+ ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH− ions to balance the H+ ions in the half rea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silver
Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. The metal is found in the Earth's crust in the pure, free elemental form ("native silver"), as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc Refining (metallurgy), refining. Silver has long been valued as a precious metal. Silver metal is used in many bullion coins, sometimes bimetallism, alongside gold: while it is more abundant than gold, it is much less abundant as a native metal. Its purity is typically measured on a per-mille basis; a 94%-pure alloy is described as "0.940 fine". As one of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]