Sieve Theory
   HOME
*





Sieve Theory
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit ''X''. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms. In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be. One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations ( Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Selberg Sieve
In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s. Description In terms of sieve theory the Selberg sieve is of ''combinatorial type'': that is, derives from a careful use of the inclusion–exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an ''upper bound'' for the size of the sifted set. Let A be a set of positive integers \le x and let P be a set of primes. Let A_d denote the set of elements of A divisible by d when d is a product of distinct primes from P. Further let A_1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are \le z. The object of the sieve is to estimate :S(A,P,z) = \left\vert A \setminus \bigc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yitang Zhang
Yitang Zhang (; born February 5, 1955) is a Chinese American mathematician primarily working on number theory and a professor of mathematics at the University of California, Santa Barbara since 2015. Previously working at the University of New Hampshire as a lecturer, Zhang submitted a paper to the ''Annals of Mathematics'' in 2013 which established the first finite bound on the least gap between consecutive primes that is attained infinitely often. This work led to a 2013 Ostrowski Prize, a 2014 Cole Prize, a 2014 Rolf Schock Prize, and a 2014 MacArthur award. Zhang became a professor of mathematics at the University of California, Santa Barbara in fall 2015. Early life and education Zhang was born in Shanghai, China, with his ancestral home in Pinghu, Zhejiang. He lived in Shanghai with his grandmother until he went to Peking University. At around the age of nine, he found a proof of the Pythagorean theorem. He first learned about Fermat's Last Theorem and the Goldbach c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Friedlander–Iwaniec Theorem
In analytic number theory the Friedlander–Iwaniec theorem states that there are infinitely many prime numbers of the form a^2 + b^4. The first few such primes are :2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, … . The difficulty in this statement lies in the very sparse nature of this sequence: the number of integers of the form a^2+b^4 less than X is roughly of the order X^. History The theorem was proved in 1997 by John Friedlander and Henryk Iwaniec. Iwaniec was awarded the 2001 Ostrowski Prize in part for his contributions to this work. Refinements The theorem was refined by D.R. Heath-Brown and Xiannan Li in 2017.. In particular, they proved that the polynomial a^2 + b^4 represents infinitely many primes when the variable b is also required to be prime. Namely, if f(n) is the prime numbers less then n in the form a^2 + b^4, then f(n) \sim v \frac where v=2 \sqrt \frac \prod_ \frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Lemma Of Sieve Theory
In number theory, the fundamental lemma of sieve theory is any of several results that systematize the process of applying sieve methods to particular problems. Halberstam & Richert write: Diamond & Halberstam attribute the terminology ''Fundamental Lemma'' to Jonas Kubilius. Common notation We use these notations: * A is a set of X positive integers, and A_d is its subset of integers divisible by d * w(d) and R_d are functions of A and of d that estimate the number of elements of A that are divisible by d, according to the formula : \left\vert A_d \right\vert = \frac X + R_d . :Thus w(d)/d represents an approximate density of members divisible by ''d'', and R_d represents an error or remainder term. * P is a set of primes, and P(z) is the product of those primes \leq z * S(A, P, z) is the number of elements of A not divisible by any prime in P that is \leq z * \kappa is a constant, called the sifting density, that appears in the assumptions below. It is a weighted average ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goldbach Conjecture
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4 × 1018, but remains unproven despite considerable effort. History On 7 June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII), in which he proposed the following conjecture: Goldbach was following the now-abandoned convention of considering 1 to be a prime number, so that a sum of units would indeed be a sum of primes. He then proposed a second conjecture in the margin of his letter, which implies the first: Euler replied in a letter dated 30 June 1742 and reminded Goldbach of an earlier conversation they had had (), in which Goldbach had remarked that the first of those two conjectures would follow from the statement This is in fact equivalent to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sufficiently Large
In the mathematical areas of number theory and analysis, an infinite sequence or a function is said to eventually have a certain property, if it doesn't have the said property across all its ordered instances, but will after some instances have passed. The use of the term "eventually" can be often rephrased as "for sufficiently large numbers", and can be also extended to the class of properties that apply to elements of any ordered set (such as sequences and subsets of \mathbb). Notation The general form where the phrase eventually (or sufficiently large) is found appears as follows: :P is ''eventually'' true for x (P is true for ''sufficiently large'' x), where \forall and \exists are the universal and existential quantifiers, which is actually a shorthand for: :\exists a \in \mathbb such that P is true \forall x \ge a or somewhat more formally: :\exists a \in \mathbb: \forall x \in \mathbb:x \ge a \Rightarrow P(x) This does not necessarily mean that any particular val ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chen Jingrun
Chen Jingrun (; 22 May 1933 – 19 March 1996), also known as Jing-Run Chen, was a Chinese mathematician who made significant contributions to number theory, including Chen's theorem and the Chen prime. Life and career Chen was the third son in a large family from Fuzhou, Fujian, China. His father was a postal worker. Chen Jingrun graduated from the Mathematics Department of Xiamen University in 1953. His advisor at the Chinese Academy of Sciences was Hua Luogeng. His work on the twin prime conjecture, Waring's problem, Goldbach's conjecture and Legendre's conjecture led to progress in analytic number theory. In a 1966 paper he proved what is now called Chen's theorem: every sufficiently large even number can be written as the sum of a prime and a semiprime (the product of two primes) – e.g., 100 = 23 + 7·11. Despite being persecuted during the Cultural Revolution, he expanded his proof in the 1970s. After the end of the Cultural Revolutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiprime
In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes. Examples and variations The semiprimes less than 100 are: Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes: The semiprimes are the case k=2 of the k- almost primes, numbers with exactly k prime factors. However some sources use "semiprime" to refer to a larger set of numbers, the numbers with at most two prime factors (including unit (1), primes, and semiprimes). These are: Formula for number of semiprimes A semiprime counting formula was discovered by E. Noel and G. Panos in 2005. Let \pi_2(n) denote the number of semiprimes less than or equal to n. Then \pi_2(n) = \sum_^ pi(n/p_k) - k + 1 /math> w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chen's Theorem
In number theory, Chen's theorem states that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes). History The theorem was first stated by Chinese mathematician Chen Jingrun in 1966, with further details of the proof in 1973. His original proof was much simplified by P. M. Ross in 1975. Chen's theorem is a giant step towards the Goldbach's conjecture, and a remarkable result of the sieve methods. Chen's theorem represents the strengthening of a previous result due to Alfréd Rényi, who in 1947 had shown there exists a finite ''K'' such that any even number can be written as the sum of a prime number and the product of at most ''K'' primes. Variations Chen's 1973 paper stated two results with nearly identical proofs. His Theorem I, on the Goldbach conjecture, was stated above. His Theorem II is a result on the twin prime conjecture. It states that if ''h'' is a positive even integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brun's Theorem
In number theory, Brun's theorem states that the sum of the reciprocals of the twin primes (pairs of prime numbers which differ by 2) converges to a finite value known as Brun's constant, usually denoted by ''B''2 . Brun's theorem was proved by Viggo Brun in 1919, and it has historical importance in the introduction of sieve methods. Asymptotic bounds on twin primes The convergence of the sum of reciprocals of twin primes follows from bounds on the density of the sequence of twin primes. Let \pi_2(x) denote the number of primes ''p'' ≤ ''x'' for which ''p'' + 2 is also prime (i.e. \pi_2(x) is the number of twin primes with the smaller at most ''x''). Then, for ''x'' ≥ 3, we have : \pi_2(x) =O\left(\frac \right). That is, twin primes are less frequent than prime numbers by nearly a logarithmic factor. It follows from this bound that the sum of the reciprocals of the twin primes converges, or stated in other words, the twin primes form a small set. In explicit terms the su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twin Prime Conjecture
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair (2, 3) is not considered to be a pair of twin primes. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]