Shape Analysis (digital Geometry)
   HOME
*





Shape Analysis (digital Geometry)
This article describes shape analysis to analyze and process geometric shapes. Description ''Shape analysis'' is the (mostly) automatic analysis of geometric shapes, for example using a computer to detect similarly shaped objects in a database or parts that fit together. For a computer to automatically analyze and process geometric shapes, the objects have to be represented in a digital form. Most commonly a boundary representation is used to describe the object with its boundary (usually the outer shell, see also 3D model). However, other volume based representations (e.g. constructive solid geometry) or point based representations (point clouds) can be used to represent shape. Once the objects are given, either by modeling (computer-aided design), by scanning (3D scanner) or by extracting shape from 2D or 3D images, they have to be simplified before a comparison can be achieved. The simplified representation is often called a ''shape descriptor'' (or fingerprint, signature). The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shape
A shape or figure is a graphics, graphical representation of an object or its external boundary, outline, or external Surface (mathematics), surface, as opposed to other properties such as color, Surface texture, texture, or material type. A plane shape or plane figure is constrained to lie on a ''plane (geometry), plane'', in contrast to ''solid figure, solid'' 3D shapes. A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved ''surface (mathematics), surface'' (a non-Euclidean two-dimensional space). Classification of simple shapes Some simple shapes can be put into broad categories. For instance, polygons are classified according to their number of edges as triangles, quadrilaterals, pentagons, etc. Each of these is divided into smaller categories; triangles can be equilateral, isosceles, obtuse triangle, obtuse, Triangle#By internal angles, acute, Triangle, scalene, etc. while quadrilaterals can be rectangles, rho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Harmonic
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, each function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3), the group of rotations in three dimensions, and thus play a central role in the group theoretic discussion of SO(3). Spherical harmonics originat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image Processing
An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensional picture, that resembles a subject. In the context of signal processing, an image is a distributed amplitude of color(s). In optics, the term “image” may refer specifically to a 2D image. An image does not have to use the entire visual system to be a visual representation. A popular example of this is of a greyscale image, which uses the visual system's sensitivity to brightness across all wavelengths, without taking into account different colors. A black and white visual representation of something is still an image, even though it does not make full use of the visual system's capabilities. Images are typically still, but in some cases can be moving or animated. Characteristics Images may be two or three-dimensional, such as a pho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equidimensional
Equidimensional may refer to: * Equidimensional (geology) used to describe the shape of three-dimensional objects. *Equidimensionality In mathematics, especially in topology, equidimensionality is a property of a space that the local dimension is the same everywhere. Definition (topology) A topological space ''X'' is said to be equidimensional if for all points ''p'' in ''X'', t ...
: property of a space that the local dimension is the same everywhere. {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Data Analysis
In applied mathematics, topological based data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools. The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to allow mathematically rigorous study of "shape". The main tool is persistent homology, an adaptation of homology to point cloud data. Persistent homology has been applied to many types of data across many fields. Moreover, its mathematical foundation is also of theore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Differential Geometry
Discrete differential geometry is the study of discrete counterparts of notions in differential geometry. Instead of smooth curves and surfaces, there are polygons, meshes, and simplicial complexes. It is used in the study of computer graphics, geometry processing and topological combinatorics. See also *Discrete Laplace operator *Discrete exterior calculus *Discrete Morse theory *Topological combinatorics *Spectral shape analysis * Abstract differential geometry *Analysis on fractals *Discrete calculus Discrete calculus or the calculus of discrete functions, is the mathematical study of ''incremental'' change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. The word ''ca ... ReferencesDiscrete differential geometry Forum* * * Alexander I. Bobenko, Yuri B. Suris (2008), "Discrete Differential Geometry", American Mathematical Society, Differential geometry Simplicial sets {{differential-geomet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Morse Theory
Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces, homology computation, denoising, mesh compression, and topological data analysis. Notation regarding CW complexes Let X be a CW complex and denote by \mathcal its set of cells. Define the ''incidence function'' \kappa\colon\mathcal \times \mathcal \to \mathbb in the following way: given two cells \sigma and \tau in \mathcal, let \kappa(\sigma,~\tau) be the degree of the attaching map from the boundary of \sigma to \tau. The boundary operator is the endomorphism \partial of the free abelian group generated by \mathcal defined by :\partial(\sigma) = \sum_\kappa(\sigma,\tau)\tau. It is a defining property of boundary operators that \partial\circ\partial \equiv 0. In more axiomatic definitions one can find the requirement that \forall \sigma,\tau^ \in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spectral Shape Analysis
Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc. Laplace The Laplace–Beltrami operator is involved in many important differential equations, such as the heat equation and the wave equation. It can be defined on a Riemannian manifold as the divergence of the gradient of a real-valued function ''f'': :\Delta f := \operatorname \operatorname f. Its spectral components can be computed by solving the Helmholtz equation (or Laplacian eigenvalue problem): : \Delta \varphi_i + \lambda_i \varphi_i = 0. The solutions are the eigenfunctions \varphi_i (modes) and corresponding eigenvalues \lambda_i, representing a diverging sequence of positive real numbers. The first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Geometric Shapes
Lists of shapes cover different types of geometric shape and related topics. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools. Mathematics * List of mathematical shapes * List of two-dimensional geometric shapes ** List of triangle topics ** List of circle topics * List of curves * List of surfaces * List of polygons, polyhedra and polytopes ** List of regular polytopes and compounds Elsewhere * Solid geometry, including table of major three-dimensional shapes * Box-drawing character * Cuisenaire rods (learning aid) * Geometric shape * Geometric Shapes (Unicode) * Glossary of shapes with metaphorical names * List of symbols Many (but not all) graphemes that are part of a writing system that encodes a full spoken language are included in the Unicode standard, which also includes graphical symbols. See: * Language code * List of Unicode characters * List of writing s ... * Pattern Blocks (learning aid) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reeb Graph
A Reeb graphY. Shinagawa, T.L. Kunii, and Y.L. Kergosien, 1991. Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11(5), pp.66-78 (named after Georges Reeb by René Thom) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold. According to a similar concept was introduced by G.M. Adelson-Velskii and A.S. Kronrod and applied to analysis of Hilbert's thirteenth problem. Proposed by G. Reeb as a tool in Morse theory, Reeb graphs are the natural tool to study multivalued functional relationships between 2D scalar fields \psi, \lambda, and \phi arising from the conditions \nabla \psi = \lambda \nabla \phi and \lambda \neq 0, because these relationships are single-valued when restricted to a region associated with an individual edge of the Reeb graph. This general principle was first used to study neutral surfaces in oceanography. Reeb graphs have also found a wide variety of applications in comput ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Shape Analysis
Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc. Laplace The Laplace–Beltrami operator is involved in many important differential equations, such as the heat equation and the wave equation. It can be defined on a Riemannian manifold as the divergence of the gradient of a real-valued function ''f'': :\Delta f := \operatorname \operatorname f. Its spectral components can be computed by solving the Helmholtz equation (or Laplacian eigenvalue problem): : \Delta \varphi_i + \lambda_i \varphi_i = 0. The solutions are the eigenfunctions \varphi_i (modes) and corresponding eigenvalues \lambda_i, representing a diverging sequence of positive real numbers. The first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (functional Analysis)
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is said to be in the spectrum of a bounded linear operator T if T-\lambda I is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator ''R'' on the Hilbert space ℓ2, :(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots). This has no eigenvalues, since if ''Rx''=''λx'' then by expanding this expression we see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]