Set Balancing
   HOME
*





Set Balancing
The set balancing problem in mathematics is the problem of dividing a set to two subsets that have roughly the same characteristics. It arises naturally in design of experiments. There is a group of subjects. Each subject has several features, which are considered binary. For example: each subject can be either young or old; either black or white; either tall or short; etc. The goal is to divide the subjects to two sub-groups: treatment group (T) and control group (C), such that for each feature, the number of subjects that have this feature in T is roughly equal to the number of subjects that have this feature in C. E.g., both groups should have roughly the same number of young people, the same number of black people, the same number of tall people, etc. Matrix representation Formally, the set balancing problem can be described as follows. m is the number of subjects in the general population. n is the number of potential features. The subjects are described by A, an n\times ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Design Of Experiments
The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation. In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must be h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Control Group
In the design of experiments, hypotheses are applied to experimental units in a treatment group. In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. There may be more than one treatment group, more than one control group, or both. A placebo control group can be used to support a double-blind study, in which some subjects are given an ineffective treatment (in medical studies typically a sugar pill) to minimize differences in the experiences of subjects in the different groups; this is done in a way that ensures no participant in the experiment (subject or experimenter) knows to which group each subject belongs. In such cases, a third, non-treatment control group can be used to measure the placebo effect directly, as the difference between the responses of placebo subjects and untreated subjects, perhaps paired by age group or other factors (such as being twins). For the conclusions drawn from the results of an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Randomized Algorithm
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables. One has to distinguish between algorithms that use the random input so that they always terminate with the correct answer, but where the expected running time is finite (Las Vegas algorithms, for example Quicksort), and algorithms which have a chance of producing an incorrect result (Monte Carlo algorithms, for example the Monte Carlo algorithm for the MFAS problem) or fail to produce a result either by signaling a failure or failing to terminate. In some cases, probabilistic algorithms are the only practical means of solving a problem. In common practice, randomized algor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


With High Probability
In mathematics, an event that occurs with high probability (often shortened to w.h.p. or WHP) is one whose probability depends on a certain number ''n'' and goes to 1 as ''n'' goes to infinity, i.e. the probability of the event occurring can be made as close to 1 as desired by making ''n'' big enough. Applications The term WHP is especially used in computer science, in the analysis of probabilistic algorithms. For example, consider a certain probabilistic algorithm on a graph with ''n'' nodes. If the probability that the algorithm returns the correct answer is 1-1/n, then when the number of nodes is very large, the algorithm is correct with a probability that is very near 1. This fact is expressed shortly by saying that the algorithm is correct WHP. Some examples where this term is used are: * Miller–Rabin primality test: a probabilistic algorithm for testing whether a given number ''n'' is prime or composite. If ''n'' is composite, the test will detect ''n'' as composite WHP. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chernoff Bound
In probability theory, the Chernoff bound gives exponentially decreasing bounds on tail distributions of sums of independent random variables. Despite being named after Herman Chernoff, the author of the paper it first appeared in, the result is due to Herman Rubin. It is a sharper bound than the first- or second-moment-based tail bounds such as Markov's inequality or Chebyshev's inequality, which only yield power-law bounds on tail decay. However, the Chernoff bound requires the variates to be independent, a condition that is not required by either Markov's inequality or Chebyshev's inequality (although Chebyshev's inequality does require the variates to be pairwise independent). The Chernoff bound is related to the Bernstein inequalities, which were developed earlier, and to Hoeffding's inequality. The generic bound The generic Chernoff bound for a random variable is attained by applying Markov's inequality to . This gives a bound in terms of the moment-generating function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Union Bound
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one of a countable number of events in terms of the individual probabilities of the events. Boole's inequality is named for its discoverer George Boole. Formally, for a countable set of events ''A''1, ''A''2, ''A''3, ..., we have :\left(\bigcup_^ A_i \right) \le \sum_^ (A_i). In measure-theoretic terms, Boole's inequality follows from the fact that a measure (and certainly any probability measure) is ''σ''- sub-additive. Proof Proof using induction Boole's inequality may be proved for finite collections of n events using the method of induction. For the n=1 case, it follows that :\mathbb P(A_1) \le \mathbb P(A_1). For the case n, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Design Of Experiments
The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation. In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must be h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]